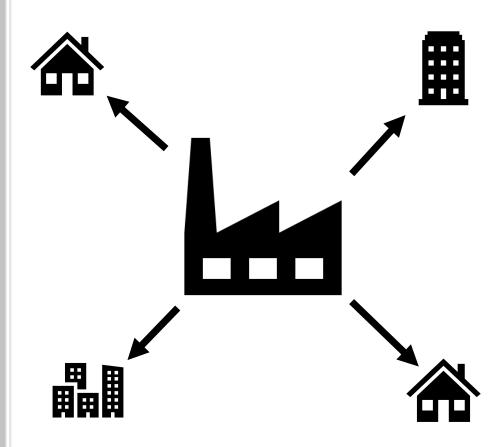
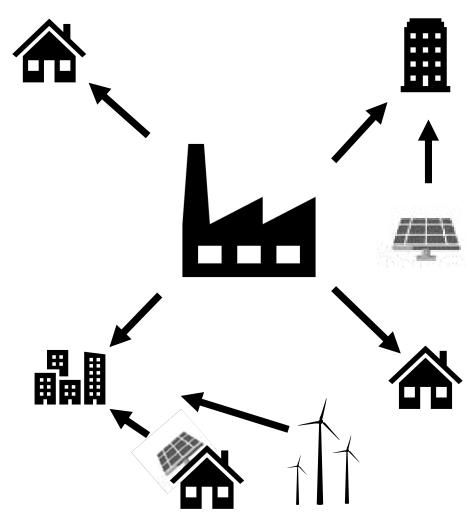

Inhaltsverzeichnis

- Einführung
- Wie das Smart Grid aussieht
- Komponenten
- Vorteile
- Nachteile
- Fazit

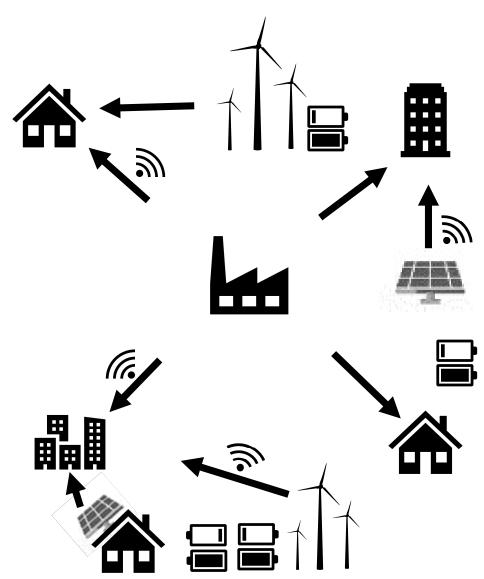
Weswegen muss das Netz ausgebaut werden?

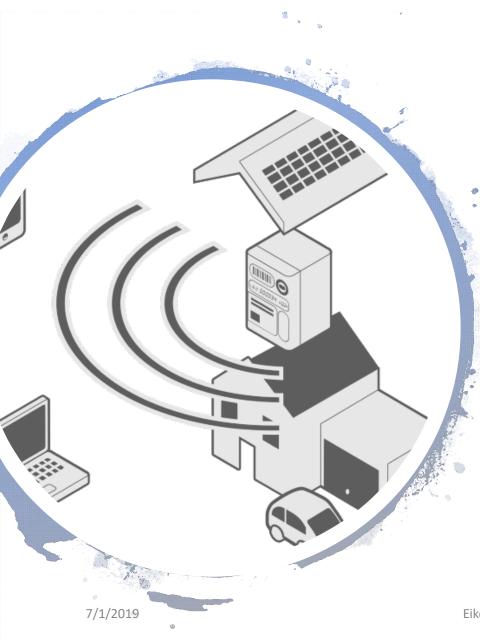

Anteil am Strommix

Eike Pachernegg Smart:Sustainable


Ursprung des Stromnetzes

- Stromerzeugung durch wenige zentrale Kraftwerke
- Controlling & Monitoring durch Menschen
- Etablierter Prozess


Aktuelle Umbrüche in der Energiewirtschaft


- Wandel von der zentralen zur dezentralen Erzeugung
- Fossile Energieträger werden zunehmend durch Erneuerbare ersetzt, PV & Wind (2018; 40,2 %)
- Vorhersagen zur Bereitstellung von Strom bei konventionellen Anbietern wird zunehmend komplexer
- Kein übersichtliches Controlling von Einspeisung des Kohle/ Atomstroms kombiniert mit erneuerbaren Energien

Smart Grid = Intelligentes Stromnetz

- Erweiterung des Stromnetzes durch digitale Sensorik & Regelungstechnik um die Netzstabilität zu sichern
- Regelung von fluktuierender Angebot und Nachfrage
- Autarke Steuerung durch intelligente Software
- Speichertechnologien um die die Stromversorgung auch bei Flauten sicherzustellen

Smart Meter

- Intelligente Messgerät mit Kommunikationsweg
- Nutzerinformationen werden an Messstellenbetreiber gesendet
- Zwei Wege Kommunikation (Stromkonsum/ Verbrauchsmuster)
- Übermittelt welche Geräte für wie lange im Einsatz sind
- Geben Informationen über private dezentrale Energieeinspeisungen an bspw. PV
- Ermöglichen externe Eingriffe zur Regulierung von Einspeisung und Konsum

Eike Pachernegg Smart:Sustainable

Smart Meter für den Verbraucher

- Visualisiert jegliche Verbräuche und Einspeisungen
- Fördert das Bewusstsein über den Stromkonsum anhand von Verbrauchsanalysen
- Informiert über Zeiträumen in denen günstiger Strom verfügbar ist
- Ermöglichen die Umsetzung von variablen Tarife

- Fördert dezentrale Stromerzeugung
- Bietet Infrastruktur für Energiewende
- Vorteile
- Strom wird durch Energiemanagementsysteme effizienter genutzt
- Monitoring des Gesamtsystems
- Reduziert die Nachfrage an zentralisierten Erzeugungsanlagen

Mit hohen Kosten verbunden

Nachteile

- Noch nicht genügend Speichermöglichkeiten vorhanden
- Ein komplexes System ist anfällig für IT-Angriffe
- Durch die Aufzeichnung der Lastenkurven gibt der Stromkunde zudem Daten über seine Lebensgewohnheiten preis (z.B. welche Elektrogeräte werden genutzt, wann ist der Stromkunde zu Hause, etc.)

Wesentlicher Bestandteil zur Integration Erneuerbarer Energien

Fazit

- Energiesparpotential von bis zu 20 Prozent
- Könnte bei der Umstellung auf 100 Prozent Erneuerbare für Einsparungen von bis zu 311 Mega Tonnen CO₂ Äquivalenten sorgen

Fragen und Anregungen?

Quellen

Umwelt Bundesamt: Stromerzeugung erneuerbar und konventionell (2019)

https://www.umweltbundesamt.de/daten/energie/stromerzeugung-erneuerbar-konventionell#textpart-1 aufgerufen am 18.06.2019

Umwelt Bundesamt: Treibhausgas-Emissionen in Deutschland (2019)

https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-deutschland#textpart-1 aufgerufen am 14.06.2019

https://www.energy-charts.de/energy_pie_de.htm?year=2018

Fraunhofer ISE: Nettostromerzeugung in Deutschland in 2018

https://www.energy-charts.de/energy_pie_de.htm?year=2018 aufgerufen am 15.06.2019

Fraunhofer ESK: Smart Grid Communications 2020 (2012)

https://www.esk.fraunhofer.de/content/dam/esk/dokumente/SmartGrid_Studie_dt_web_neu.pdf aufgerufen am 20.06.2019

Quellen

Ministerium für Umwelt Klima und Energiewirtschaft: Roadmap der Smart Grid Plattform Baden-Württemberg

Karlsruher Institut für Technologie (KIT): Smart Grids-Kongress 2018: Smart Data für Smart Grids

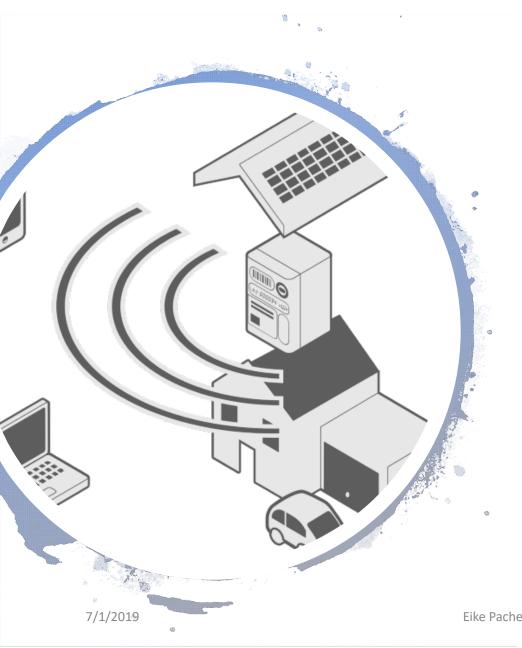
Max v. Schönfeld; Nils Wehkamp (2016): Big Data & Smart Grid – Intelligente Energieversorgung zwischen Effizienz und Privatsphäre

Bundesregierung: Was bring, was kostet die Energiewende; https://www.bundesregierung.de/breg-de/themen/energiewende/was-bringt-was-kostet-die-energiewende-394146 aufgerufen 17.06.201

Open4Innovation: Smart Grid (2016)

https://www.bundesregierung.de/breg-de/themen/energiewende/was-bringt-was-kostet-die-energiewende-394146 aufgerufen um am 17.06.2019

Photovoltaik.org: Smart Grid

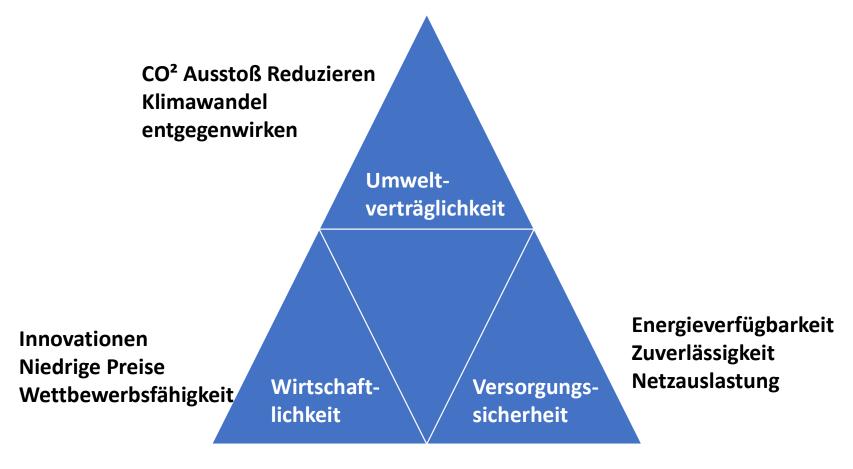

(https://www.photovoltaik.org/wissen/smart-grid aufgerufen am 23.06.2019

Bundesnetzagetur: Smart Grid/Smart Meter (2018)

https://www.bundesnetzagentur.de/SharedDocs/FAQs/DE/Sachgebiete/Energie/Verbraucher/NetzanschlussUndMessung/MsBG/FAQ_IntelligentesMesssystem_iMsys.html?nn=706202 aufgerufen am 25.06.2019

Industrieanzeiger:Smart Grids für Nachhaltigkeit (2010)

https://industrieanzeiger.industrie.de/news/smart-grids-fuer-nachhaltigkeit/ aufgerufen am 26.06.2019



Smart Meter für den Verbraucher

- Visualisiert jegliche Verbräuche und Einspeisungen
- Fördert das Bewusstsein über den Stromkonsum anhand von Verbrauchsanalysen
- Informiert über Zeiträumen in denen günstiger Strom verfügbar ist
- Ermöglichen die Umsetzung von variablen Tarife

Eike Pachernegg Smart:Sustainable

Vorteile zum Zieldreieck der Energiepolitik

Speicherung

 Pumpspeicherkraftwerke sind z.Zt. Die einzig etablierten und bewährten großtechnische Speicherformen

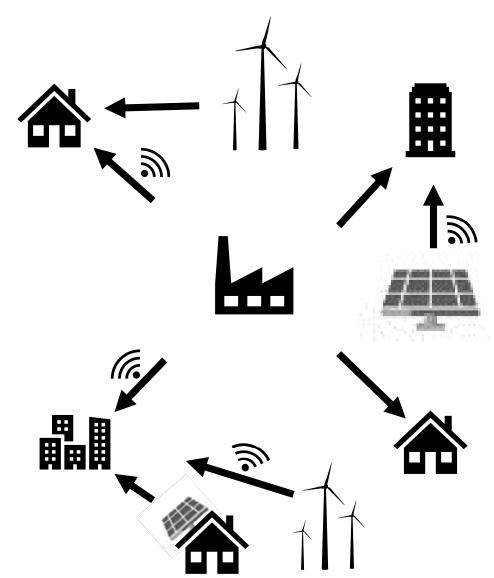
- Optional:
- Vernetzung von Elektroautos als Zwischenspeicher
- Verwendung von Lithium-Ionen bzw. Redox-Flow Batterien
- Herstellung von Wasserstoff/ Methan

Smart Grid

Die Energieversorgung wird effizienter gestaltet durch:

Erzeugung → Regenerative Energieträger

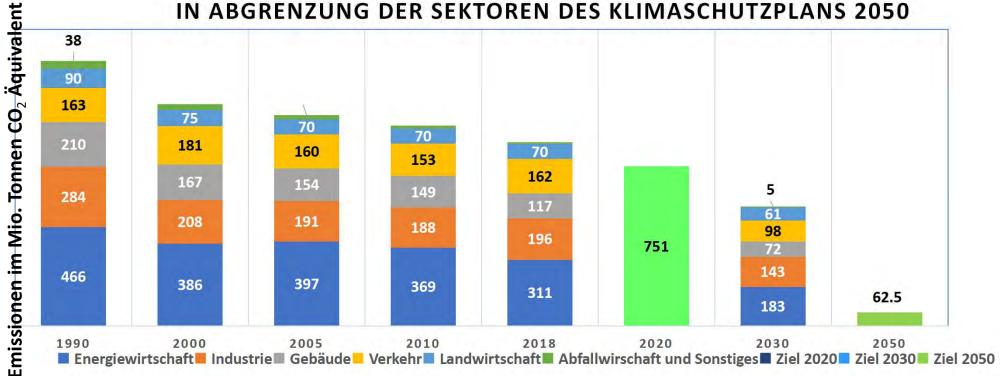
Speicherung → Pump-/ Druckluftspeicher, Batterien, Wasserstoff



Verbrauchanalyse → Daten, Smart Meter, two-way communication

Netzmanagement → ausgelastetes Inselnetze, KI, autark

 Experten rechnen mit Energiesparpotenzialen zwischen 20 und 25 % – in gewerblichen Bauten können sie noch deutlich höher liegen.


Wichtige Komponenten

- Erweiterung des Stromnetzes durch digitale Sensor & Regelungstechnik um die Netzstabilität zu gewährleisten
- Netzstabilität = Konstante Netzfrequent von 50 Hz
- Netzfrequenz zu niedrig = es fehlt Strom im Netz (hohe Nachfrage)
- Netzfrequenz zu hoch = es ist zu viel Strom im Netz (geringe Nachfrage)

ENTWICKLUNG DER TREIBHAUSGASEMISSIONEN IN ABGRENZUNG DER SEKTOREN DES KLIMASCHUTZPLANS 2050

Quelle: Umweltbundesamt

Smart Meter für den Verbraucher

- Fernkommunizierende digitale Stromzähler:
- Verbraucher erhalten Visualisierung jeder konsumierten kWh Anreiz zur Reflektion des eigenen Energiekonsums
 Weist auf Optimierungslücken hin
- Ermöglichen die Umsetzung von variablen Tarife
 Verbraucher erhält wirtschaftliche Anreize
 Option Strom zu nutzen wenn er günstig ist

Der Smart Meter

- Besteht aus:
- Digitalen Stromzählern
- Visualisieren jegliche Verbräuche
- Kommunikationseinheiten
- Two-Way Communication
- > Bietet eine Einbindung des Zählers in das intelligente Stromnetz

Digitalisierung des Stromnetzes

- Stromerzeugung aus PV und Windanlagen unterliegt großen wetterbedingten Schwankungen
- Intelligente kommunikative Verknüpfung von wesentlichen Akteuren:

Erzeugung

Transport

Speicherung

Verteilung

Konsum

Stromangebot

• Basiert auf exaktem Datenmaterial:

• Informationen über Mio. dezentraler Energieerzeugungsanlagen

•