

27. Juni 2019 | Symposium smart: sustainable | HS Bochum

Kreislaufwirtschaft und Digitalisierung

eine perfekte Symbiose?

Jana Nicolas

Wuppertal Institut für Klima, Umwelt, Energie gGmbH

Das Wuppertal Institut Mission und Auftrag

- > ... erforscht und entwickelt Leitbilder, Strategien und Instrumente für Übergänge zu einer nachhaltigen Entwicklung auf regionaler, nationaler und internationaler Ebene.
- Mercislaufwirtschaft mit Blick auf eine optimierte Ressourceneffizienz ausgestaltet werden sollte. Welche Rohstoffe können sinnvoll im Kreis geführt werden? Bei welchen Produkten und Abfallströmen sollte die Vermeidung von Abfällen prioritär ansetzen?

Wo soll es mit der Kreislaufwirtschaft hingehen?

Abfallhierarchie



Prevetion Produkt (vor Abfall) Abfall Preparing for re-use Recycling Recovery Disposal

EU waste framework directive, eigene Darstellung

Kreislaufwirtschaft

Quelle: WI in Anlehnung an EEA

einschließlich Energieträger

Europa auf dem Weg zu einer Kreislaufwirtschaft: Die potenziellen Vorteile

"... bessere Zukunftsaussichten für die europäische Wirtschaft (...)", "Aussicht auf nachhaltiges Wachstum, das andauert (...)"".

Signifikante Auswirkungen auf Innovation, Kapitalproduktivität und verringerte Abhängigkeit von Rohstoffimporten

Geschätzte jährliche netto-Materialkosteneinspar-Potenziale von bis zu 640 Mrd. Euro (nach Ellen McArthure Foundation).

... aber wir sind noch lange nicht dort.

Wuppertal Institut Hemmnisse der Kreislaufwirtschaft Primärrohstoffe Erhöhte Transaktions- und Suchkosten Produktion Unterentwickelte Informationsverfügbarkeit Sekundär-Rohstoffe Regulatorische Barrieren Technologische Handel Probleme Verzerrte Wahrnehmung Verwerter/ durch potenziellen Entsorger Kunden. Verbraucher Inertisierung (unschädlich machen)

Digitale Entwicklungen als Ermöglicher für die Kreislaufwirtschaft

Digitale Transformation der Kreislaufwirtschaft

Ansatzpunkte und Anwendungsbeispiele

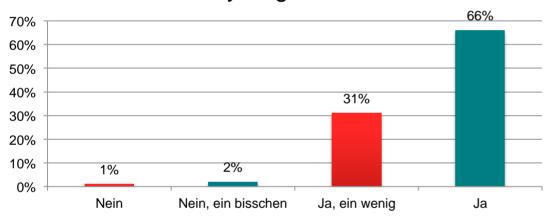
- Sensoring

 Data Creation and Processing
- Digital Asset Management
 Optimized Operations, Predictive Maintenance
- Optimized Operations / Logistics

Cyber Physical Systems (Digital Twins)

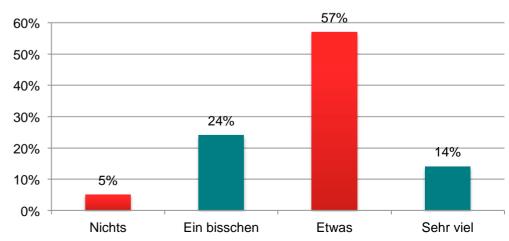
- Digitale Planung/Simulation von Produktionsanlagen Produktinformation (Zusammensetzung, Nutzung)
- Automated Materials Tracing/Tracking
- Automated Sorting/ Quality Control
- Digital Platforms for Secondary Materials

 Match-making, regionale Märkte
- Machine Economy
 Autonomous machine-to-machine interactions
- Artificial Intelligence


 Data analytics, maschinelles Lernen, Matching-Prozesse

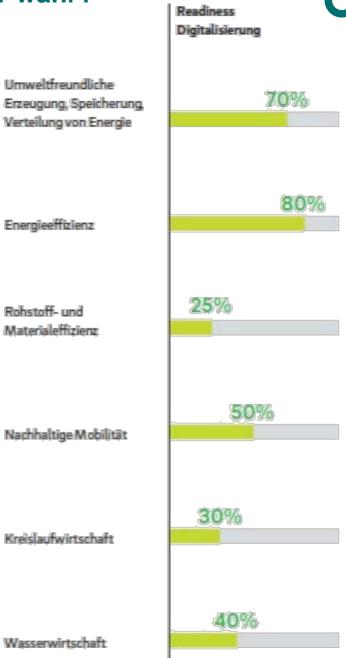
Grafik: WI in Anlehnung an EEA

Ausgangspunkt



Wird die 4. industrielle Revolution Einfluss auf die Abfallwirtschaft und das Recycling haben?

- Globale online Umfrage
- Antworten von 1087
 Mitgliedern der Industrie aus 97 Ländern


Wissensstatus der Teilnehmer über die 4. industrielle Revolution

Quelle: ISWA 2017.

Welche aktuellen Trends nehmen wir wahr?

Digital Readiness

Wuppertal Institut

BMUB/Roland Berger, 2016, Think Act! https://www.rolandberger.com/de/Publications/pub_die_digitalisierung_in_der_umwelttechnik_branche.html 27.06.2019

Aktuelle Herausforderungen

Digitale Transformation wird nur zaghaft angegangen – Wer macht das Rennen?

Unternehmen beachten bei Investitionen in digitale Lösungen Chancen zur Kreislaufschließung nicht, dies führt zu Effizienz- und Effektivitätsverlusten

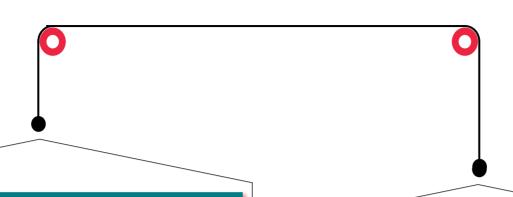
Digital Readiness ist unterentwickelt (vor allem bei KMU)

Benefit – Size-Tradeoff muss vielfach noch gelöst werden

Markierbarkeit / Verfolgbarkeit von Produkten oder Materialien ist zu lösen

Pilot paralysis: Unternehmen finden keinen konkreten Ansatzpunkt (bspw. business case)

Widerstand in der Belegschaft


Frage nach Standards und wer sich zuerst bewegt

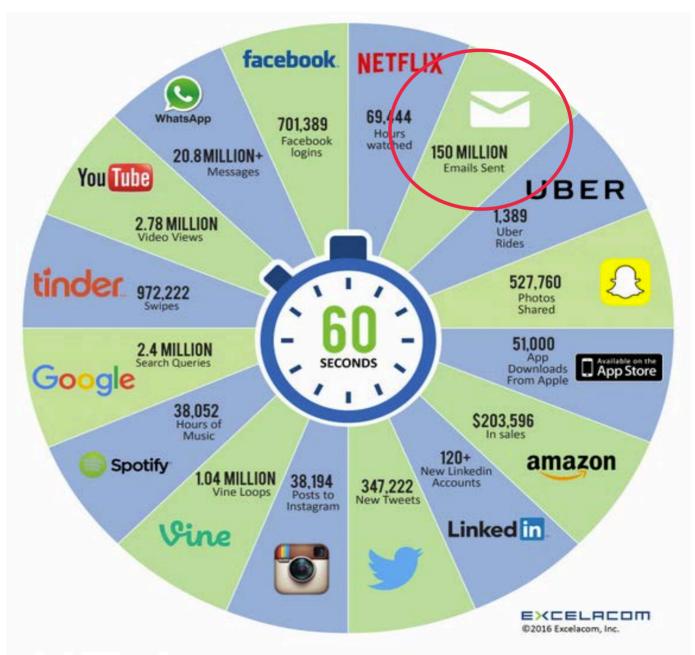
Bewertung Kreislaufwirtschaft und Digitalisierung

Umweltauswirkungen der Digitalisierung

- Gehilfe der Kreislaufwirtschaft
- Reduktion von
 Umweltauswirkungen durch
 Abfallvermeidung und
 höhere
 Wiederverwerndung, verwertung und Recycling

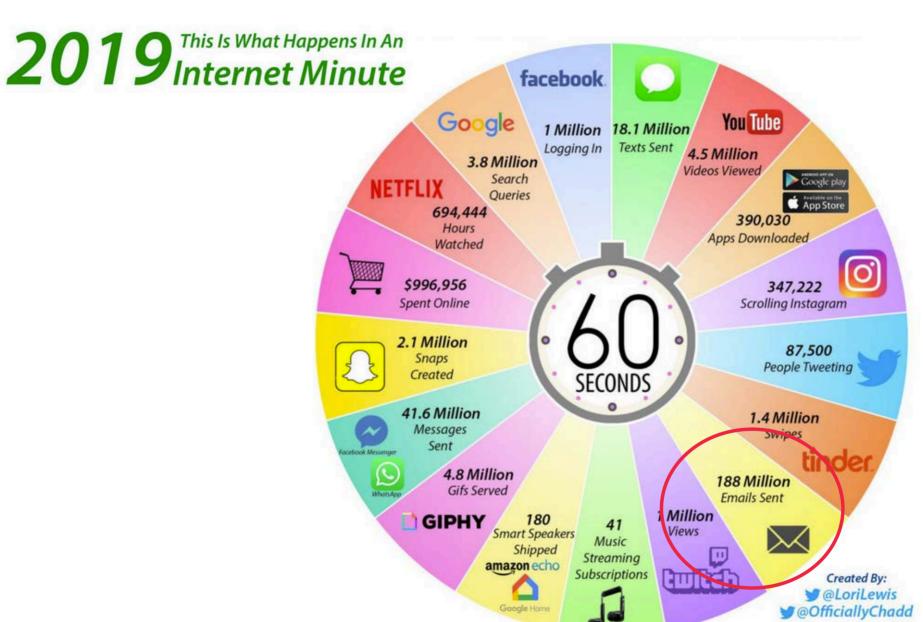
Umweltauswirkungen durch

- Energie- und
- Ressourcenverbrauch
 - Kritische Rohstoffe
 - Schlechte Recyclingfähigkeit
 - Obsolezenz



Die negativen Effekte müssen berücksichtigt und minimiert werden, teilweise ist dies erneut durch die Prinzipien der Kreislaufwirtschaft möglich

Zahlen - A secondin the life of...



Zahlen - A secondin the life of...

https://www.weforum.org/agenda/2019/03/what-happens-in-an-internet-minute-in-2019/

Image: Visual Capitalist

Digitale Transformation ist kein Selbstzweck

Die Einführung digitaler Technologien

- kostet Geld mitunter an unerwarteten Stellen.
- ist häufig mit organisationalen Veränderungen verbunden.
- hat häufig Implikationen auf die Qualifikationsanforderungen an das Personal.
- wird zuweilen eingesetzt oder angeschafft ohne den Nutzen vorher zu klären.
- → Es ist wichtig, den Nutzen digitaler Investitionen genau zu klären, bspw.
 - Einsatz im Unternehmen
 - Return on Invest
 - Kompatibilität mit bestehenden Systemen
 - Befähigung zum Einsatz
 - Metaebene: Umweltauswirkungen, Kosten-Nutzen und Alternativen

Das window of opportunity ist jetzt!

- Die digitale
 Transformation findet
 jetzt statt.
- Ein verspäteter
 Einbezug der
 Kreislaufwirtschaft
 kann mit Zusatzkosten
 verbunden sein.

19

https://upload.wikimedia.org/wikipedia/en/1/1f/René_Magritte_The_Human_Condition.jpg

Back-Up

Digitale Innovationen in der Kreislaufwirtschaft / Abfallwirtschaft

Was gibt es schon? Was erwarten wir? (Technosphäre)

End-user support systems

Automated sorting

Fully automated sharing

Automated material tracing and tracking

Smart Contract solutions

Automated Reuse and Reman. quality control

Small amount solutions

Product/material block chains

Autonomous Collection and Sorting

Automated fullcircle logistics for cyclic and cascadic utilization

Self-auctioning secondary materials and products

Material exchange platforms

Digital wearout/ deterioration prediction

Predictive maintenance

ICT improved logistics, sensors, on demand

ICT assisted sharing

Automated documentation

t

23

Am Horizont

- Autonome Sammelsysteme
- Vollintegrierte Plattformen