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1 Introduction

MultiProcessor System-on-Chip (MPSoC) are used more and more frequently in sec-
tors of industry, signal processing, and embedded systems due to their multiple usabil-
ities and increasing performance. [1]

Heterogeneous processor architectures offer promising opportunities in current and
future safety-critical innovations where real-time [2] is required. [3]

Heterogeneous MPSoC platforms offer the possibility to execute different tasks with
mixed criticalities in one MPSoC simultaneously. [4]

The implementation of a heterogeneous MPSoC in a cyber-physical system opens the
possibility to distribute its tasks between different independent computing cores. [3]

In this master thesis, the software for a heterogeneous MPSoC is designed and imple-
mented, which performs real-time bound tasks on a real-time capable core, while a
non-real-time capable core performs tasks that require an Operating System (OS). The
control of an inverted pendulum represents the tasks, that are executed on the real-time
capable core. The execution of a graphical application and network services represent
the tasks performed by the core running an OS.

The main focus lays on the design and implementation of real-time capable software
components using model-based design. In the preceding bachelor thesis [5], the fea-
sibility of implementing software on the separate computing cores of the STM32MP1
MPSoC has been demonstrated. A previous development project [6] adapted an exist-
ing model-based software development tool designed for microcontrollers [7], based
on MATLAB Simulink [8], to the real-time capable core of the MPSoC.
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1 Introduction

1.1 Objectives

The objective of this work is to develop real-time capable software for the hetero-
geneous multiprocessor platform STM32MP1. It is required, that the software for the
real-time capable core of the platform is developed by model-based design using MAT-
LAB Simulink, see item A.1.1. Other objectives are partial platform support required
for the model-based implementation and the use of the real-time capable core as a pro-
cessor in the loop with the external mode via Universal Measurement and Calibration
Protocol (XCP). The XCP messages have to be forwarded via the core running the OS
to enable a Transmission Control Protocol/Internet Protocol (TCP/IP) connection to
the development computer. The heterogeneous platform is implemented in the inverted
pendulum to demonstrate that the real-time capable core of the platform can meet the
real-time critical boundaries. Figure 1.1 shows the implementation of the STM32MP1
in the inverted pendulum, which is called self-balancing robot in the further course of
the thesis.

Figure 1.1: Self-balancing robot controlled by the STM32MP1

2



2 Foundations/Theory

This chapter explains definitions and terms that should help to understand the project.
Readers who are familiar with the topics heterogeneous multiprocessors, code genera-
tion by Simulink, and scheduling can read on at chapter 3.

2.1 Heterogeneous multiprocessor platforms

Typically, MPSoCs have multiple sets of identical cores, called clusters, and can have
programmable logic tiles, such as Graphics Processing Unit (GPU)s or Neural Process-
ing Unit (NPU)s. Typical MPSoCs have a hypervisor, that allows the operating system
to perform global scheduling of tasks. Heterogeneous MPSoCs have several different
cores that have different Instruction Set Architecture (ISA)s. Due to the different ISAs,
it is not possible to perform global scheduling by a hypervisor. Commonly, cores of
heterogeneous MPSoCs execute different operating systems. The different ISAs re-
quire a separate compilation of the code to be executed by the heterogeneous cores. [3]

2.2 Introducing the STM32MP157C-DK2

The STM32MP157C-DK2 MPSoC from STMicroelectronics [9] consists of an Arm-
based dual Cortex-A7 multicore cluster clocked at 650 MHz. This multicore cluster
is abbreviated by Cortex-A7 in the following. The Cortex-A7 has a Memory Man-
agement Unit (MMU), which enables memory virtualization. A multi-purpose Linux
operating system can be hosted on the Cortex-A7. [10]

The second core of the STM32MP157C-DK2 MPSoC is a single Arm-based Cortex-
M4 processor, which is clocked at 209 MHz. This core is abbreviated by Cortex-
M4 in the following. The Cortex-M4 is a MMU-less core [11], and can only handle
lightweight operating systems such as FreeRTOS [12] or Micrium’s RTOS [13]. [10]
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2 Foundations/Theory

The Cortex-A7 and Cortex-M4 operate independently but share peripherals such as
General Purpose Input/Output (GPIO)s, Inter-Processor Communication Controller
(IPCC), Static Random Access Memory (SRAM) and Hardware Semaphore (HSEM).
Peripherals like Serial Peripheral Interface (SPI), Analog Digital Converter (ADC)s,
Timers, or Direct Memory Access (DMA)s must be assigned to one of the processor
cores. [14]

2.3 Application Mapping and Scheduling Problems

Mapping is a configuration and simplification method that includes all the way to im-
plementation. Various analysis methods for the exploration of the design space for
performance can be mapped considering system platform Application Programming
Interface (API) descriptions of the services contained on the platform. [15]

A crucial design step is the mapping of applications to the available hardware plat-
forms. This involves mapping the applications to execution times and processors. If as
many scheduling decisions as possible are made in the design period, it is possible to
provide a time constraint guarantee. The selection of the scheduling algorithm is about
using a system with a combination of specific applications. [16]

In the application planned in this thesis, it is expected that the robot, while communi-
cating with the host computer, will continue to read the data from the accelerometer
and gyro sensor to calculate how to control the motor to maintain the balance.

Many modern embedded and cyber-physical systems are built on existing hardware
platforms because the goal is to find the right combination of hardware and software
to create a product that meets all specifications as efficiently as possible. This design
method is called hardware/software codesign. A system built on a hardware platform
is not designed through a synthesis process derived from the behavioral specification.
Another reason for the limitations that lead to the reuse of hardware, as well as software
is the increasing complexity and stringent requirements in time-to-market. The use of
existing hardware platforms leads to the term platform-based design. [16]

In this context, a platform is described as a family of architectures that fulfill con-
straints to enable the reuse of hardware and software components. Thereby platforms
represent abstraction layers to cover simplification in low levels. The use of the general
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2 Foundations/Theory

reuse technology has the goal of reducing development costs and times. The combina-
tion of hardware and software platforms leads to the systemplatform approach. [15]

When mapping applications to execution platforms by using platform-based design,
there are also different design options. For example, a decision can be made between
variants of a platform with different speeds or a different number of processors, or
different communication architecture. [16]

The mapping problem is defined as follows [17]:

Given:

• a number of applications

• application use-cases

• a number of available architectures

Find:

• the applications are mapped to the processors

• selection of an appropriate scheduling technique (if not defined)

• selection of a target architecture (if not defined)

Objectives:

• deadline compliance and/or performance maximization

• cost and energy consumption minimization and perhaps other objectives

To be able to deal with the scheduling problem in more detail, some symbols and
definitions have to be explained previously. In this thesis, the following definitions are
taken from [16]:

Definitions:

• Every task τi execution is called a job J. This implies that for a task τi there is
an associated set of jobs J(τi). The set of jobs of a task may not be finite due to
the possibility of repetitions.

• Tasks are called periodic if they are released once in a time unit Ti, where Ti is
the period of the task.

• If there is a lower bound on the length of the interval between adjacent releases
of a task, the task is called sporadic, where the interval length is also referred to
as Ti.

• Aperiodic tasks are tasks that are not periodic and not sporadic. In task systems
consisting only of periodic and sporadic tasks, the concept of hyper-periods can
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2 Foundations/Theory

simplify scheduling considerably. In this case, the interval length is also referred
to as Ti.

• The hyper-period of a periodic or sporadic task system τ is defined as the least
common multiple of the periods of the individual tasks.

Symbols[16]:

• a set of tasks τ = {τ1, · · · ,τn}
• a set of jobs J = {Ji}
• the release time ri of Ji (at the time the execution becomes available)

• the Worst-Case Execution Time (WCET) Ci

• the absolute deadline di related to Ji

• the relative deadline Di, the time between the availability of a job Ji to the time
when the job must be finished (Di = di− ri)

• the laxity or slack li. In the case that li = 0, Ji is started immediately after the
release li = Di−Ci

• the actual start time si related to Ji

• the actual end time fi related to Ji

Entirely Time Triggered (TT) systems

Entirely TT systems are systems in which a dispatcher processes a Task Descriptor
List (TDL) planned during the design process. The task of the dispatcher is to process
the TDL. The dispatcher does not make any decisions himself. In such systems, the
dispatcher can be controlled by a timer. [16]

In entirely TT systems, a temporal control structure for all tasks is defined in a plan-
ning process. The scheduling that takes place in prior time, which takes into account
the required priority and completion times between the tasks, eliminates the need for
explicit coordination by an operating system at runtime. [2]

In hard real-time systems, predictability, by satisfying timing constraints on system
behavior, is the most important concern. To ensure predictability in a complex system,
pre-run-time scheduling is often the only practical option. [18]

The main disadvantage of TT systems is that this response to events can be quite
poor. [16]

In this thesis, the scheduling of periodic and aperiodic tasks on a Cortex-M4 has to
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2 Foundations/Theory

be planned. Since all tasks are enabled by interrupts, it is not possible to use schedul-
ing methods that require a dynamic priority assignment. Therefore, scheduling meth-
ods with dynamic priority assignments such as the Earliest Deadline First (EDF) [16]
algorithm or the Least Laxity (LL) [16] algorithm are not considered here. Hence,
scheduling algorithms based on static priority assignments are considered here.

Earliest Due Date (EDD) Algorithm

If a situation is considered where all jobs arrive at the same time, and the lateness
is to be minimized, preemption of the jobs becomes unnecessary. In this situation,
a rule established by Jackson in 1955 states that given a set of independent jobs with
deadlines, any algorithm that executes the jobs in the order of nondecreasing deadlines,
operates optionally to minimize the maximum lateness. Such an algorithm is called
an EDD. Such algorithms can be statically scheduled if the deadlines are known in
advance. The complexity of the EDD algorithm is O(n logn). [19]

Scheduling Without Preemption

Scheduling algorithms without preemption require processor idle times to complete
jobs with earlier deadlines that arrive at a later time. Such are called clairvoyants be-
cause they require knowledge about the future. An algorithm that keeps the processor
idle even though it has jobs available is not called work conserving. [16]

Scheduling with Precedence Constraints

Priority rules can be mapped by Directed Acyclic Graphs (DAG)s G. The following
applies [16]:

• G = (τ,E)

• E ⊆ τ× τ

• E := edges

• τ := vertices (or nodes)

Figure 2.1 shows such a DAG. The vertex of an instance represents a task, and the
edges correspond to the dependencies of the task. In multiprocessor systems, a DAG
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2 Foundations/Theory

can also be used to separate tasks into subtasks and to distribute them to different
processors. Then, the vertices would correspond to the individual subtasks. [16]

1

2 3 4

5 6

7

Figure 2.1: DAG example (cf. [16, p. 310])

The example in Figure 2.1 shows 7 tasks. The tasks are each assigned to a node. The
edges express the order in which the tasks must be processed.

Latest Deadline First (LDF) Algorithm

In the case of simultaneous arrival times of dependent jobs, the LDF algorithm can
lead to an optimal minimization of the maximum delay. The LDF starts listing the
tasks with the largest dead time into a queue. In doing so, the LDF starts in the DAG
at the bottom row with the tasks that do not have a successor. During runtime, this
queue is processed from back to front. If the jobs occur asynchronously, a modified
LDF algorithm can be selected. [16]

In the development of periodic scheduling algorithms, there are different goals than
for aperiodic scheduling algorithms. Finding the minimum total length of a schedule,
for example, is not an issue when dealing with tasks with infinite repetition. Periodic
schedulers are considered optimal when they find a feasible schedule if one exists. For
periodic, as well as sporadic task systems, a task utilization ui can be defined according
to [16, p. 312]:
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2 Foundations/Theory

ui =
Ci

Ti
(2.1)

Even for periodic tasks, Ti is the period and for sporadic tasks, Ti is the minimum
separation of tasks, the task systems are treated with the same definition of task uti-
lization. [16]

According to [16, p. 312], the maximum utilization Umax and the total utilization Usum

for task systems τ = {τ1, · · · ,τn} are defined as follows:

Umax = max
i
(ui) (2.2a)

Usum = ∑
i

ui (2.2b)

Rate Monotonic (RM) Scheduling

Probably the best-known scheduling algorithm for independent periodic tasks is Rate
Monotonic Scheduling. [16] It requires the following RM assumptions [20, p. 2]:

• All tasks that require hard deadlines occur periodically and have a constant in-
terval between their occurrence

• All deadlines must be run-time constraints (each task must complete before it
can be invoked again)

• All tasks are independent of each other (the invocation of one task is not related
to the initialization or processing of another task)

• The runtime of each task is constant and does not change over time

• Non-periodic tasks in the system are special. They are used for initialization or
troubleshooting and do not have hard real-time constraints themselves.

Another assumption made for this type of schedule is that the context switching is
negligible. In mathematical notation, the assumptions are that Di = Ti and that Ci is
constant and known for each task.

According to [20, p. 5-6] it follows that for a single processor and n tasks the accumu-
lated utilization Usum is not allowed to be exceeded:
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2 Foundations/Theory

Usum =
n

∑
i=1

Ci

Ti
≤ n(21/n−1) (2.3)

This leads to a maximum Usum value of 0.7 for large n according to [20, p. 8]:

lim
n→∞

n(21/n−1) = loge(2) = ln(2)≈ 0.7 (2.4)

In the case of monotonic scheduling, the priorities of tasks are a monotonically de-
creasing function of the period. This means that tasks with short periods are given
high priority, and tasks with long periods are given low priority. The RM scheduling
strategy works through fixed preemptive priorities. [16]

Figure 2.2 shows an example of RM scheduling for 6 periodic tasks. The tasks are
numbered from τ1 to τ6. The double arrows in the respective task timeline symbolize
the arrival time of a task and the deadline of the previous task. The tasks are sorted
by the duration of the period. Task τ1 has the shortest period and is therefore assigned
the highest priority. Task τ6 has the longest period and is therefore assigned the lowest
priority. In Table 2.1, the worst-case execution time Ci, the period duration Ti, and the
task utilization ui are shown for the individual tasks.

τ 1

τ 2

τ 3

τ 4

τ 5

t0 1 2 3 4 5 76 8 9 10 11

τ 6

Figure 2.2: Example of a schedule generated using an RM scheduler
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2 Foundations/Theory

i Ci Ti ui =Ci/Ti
1 0.25 1 250 m
2 0.25 2 125 m
3 0.05 2.2 22.7 m
4 0.6 4 150 m
5 0.05 6 8.33 m
6 1.2 7 157 m

Table 2.1: Example RM scheduling task table

Verification can then be made to see if the accumulated utilization Usum is less than
6(21/6−1).

Usum =
n

∑
i=1

Ci

Ti
≈ 0.713≤ 6(21/6−1)≈ 0.734 (2.5)

As visible in equation (2.5), Usum is less than 6(21/6−1). This means that enough idle
time is available to guarantee schedulability for RM scheduling in this example.

Deadline Monotonic (DM) Scheduling

For tasks, whose deadline does not match the period duration, an extended RM
scheduling can be applied, which is called DM. DM scheduling can handle tasks with
explicit deadlines. Like RM, DM is based on static task priority. This is determined
by considering the relative deadline Di. If Di < Di′, task τi is assigned the higher pri-
ority. For tasks that have explicit deadlines, equation (2.3) can be transformed into
equation (2.6). [16]

Usum =
n

∑
i=1

Ci

Di
≤ n(21/n−1) (2.6)
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2 Foundations/Theory

Scheduling periodic tasks with precedence constraints

Scheduling interdependent tasks is more complex than scheduling tasks that are per-
formed independently. There are ways to reduce the scheduling effort [16]:

• Adding extra resources to simplify scheduling.

• Splitting tasks into dynamic and static, to make as many decisions as possible in
the design process and minimize the number of decisions that need to be made
dynamically at runtime.

Scheduling sporadic events

Events that occur sporadically can be associated with interrupts. If the priority of the
interrupts is higher than the system priority, the sporadic events are processed when
they occur. Such interventions in the scheduling lead to an unpredictable timing behav-
ior for all periodic tasks. To prevent this, special sporadic task servers are used. These
sporadic task servers periodically check whether sporadic tasks are ready. Sporadic
task servers can be used to convert sporadic tasks into periodic tasks. This improves
the predictability of the entire system. [16]

2.4 Concurrency on embedded hardware

Concurrency is ubiquitous in PC application development. Multithreading or process-
ing is used to create concurrent control flows. In the development of embedded soft-
ware, further forms of concurrency can be classified. [21]

Action that is driven by the program logic.

An application that consists of action traditionally has one entry point (main).
Concurrent architectures can have multiple entry points, called tasks. [21]

External events (mainly triggered by peripheral hardware).

Such events are called interrupts. Interrupts are often executed with an increased
security level and possibly in a different context than application code. [21]

Interrupts initiated by a task (mixed form of the first two items).

This form of interrupt is called “trap” or “software interrupt”. [21]

Independent hardware actions.

An example of a stand-alone hardware thread is the DMA-controlled filling of
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2 Foundations/Theory

an input buffer of a peripheral interface. [21]

Even with the three most important data transfer mechanisms of computer Input/Out-
put (I/O) devices, two can be classified as concurrent. These data transfer mechanisms
are polling, interrupts, and DMA. [22]

Polling does not belong to the concurrent procedures. [21]
But it should be explained here to emphasize one advantage of interrupts, and DMA.

Polling

Polling is the process of the processor capturing incoming data. This is usually
performed by a capture subroutine that is called in a holding loop. [22]
Polling occurs periodically and actively by the processor. [21]

Interrupts

Interrupts are interrupting the execution of the main program to store data into
a buffer. This data can be called or processed later by the main program. Back-
ground data acquisition can be realized by interrupts. Thereby the main program
remains free from data polling routines. [22]

DMA

DMA reads data from a device independently of the processor and writes it to
a system buffer. This data can be accessed or processed by the processor at a
subsequent point in time. The DMA process runs completely independently of
the processor and does not interrupt the processor.[22]

The polling strategy processes data by consuming unnecessary Central Processing Unit
(CPU) cycles on average with a 50 % delay compared to the processing by an interrupt-
based strategy. [21]

The embedded interrupt controller used in this thesis is described in section 2.5.

The strategy of implementing a DMA brings a further increase in data transfer speed
compared to the interrupt strategy since a special piece of hardware is responsible
for the data transfer. In the ideal case, the processor does not have to execute any
instructions to transfer data. [22]

The theory on the DMA can be found in section 2.6.
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2 Foundations/Theory

2.5 Nested Vectored Interrupt Controllers

This chapter only covers the Nested Vectored Interrupt Controllers (NVIC) of Coretex-
M4 processors.

The NVIC is an embedded interrupt controller. [21]

Figure 2.3 shows the NVIC in the Cortex-M4 implementation.

Figure 1. STM32 Cortex-M4 implementation

FPU

Processor
coreNVIC

Memory
protection unit

Serial
wire
viewer

Debug
access
port

Flash
patch

Data
watchpoints

Code
interface

SRAM and
peripheral interface

Embedded
Trace Macrocell

Bus matrix

Cortex-M4
processor

Figure 2.3: NVIC highlighted in the STM32 Cortex-M4 implementation

The maximum number of interrupts within an NVIC is 256, whereby the first 16 Inter-
rupts are reserved for the processor core. All interrupts greater than 15 are defined by
the processor manufacturer. This leaves a maximum of 240 interrupts defined by the
processor manufacturer. The interrupts are stored in a vectored table. [21]

The NVIC allows assigning interrupts to a priority level. This priority level ranges
from 0 to 255 for a Cortex-M4 processor. 0 is the highest priority and 255 is the
lowest. [21, 23]
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2 Foundations/Theory

The implementation of the Cortex-M4 in the STM32MP157 allows only 16 pro-
grammable priority levels (4 bit). [24]

The NVIC supports a group priority mechanism to improve the priority control of the
system. The group priority mechanism divides the interrupt priority register into two
fields. The group priority and the sub-priority within a group. A higher group priority
allows the handler to get ahead. Within a group, the sub-priority decides the order of
processing. If several interrupts with the same group priority and the same subpriority
are pending, the interrupt with the lowest interrupt number is processed first. This
feature allows interrupts to be nested. [23]

The NVIC supports “tail chaining” and “late arrivals”. [21]

Tail chaining

If during the processing of an interrupt another interrupt with low priority is
pending, the program does not return to the program flow after the processing
of the interrupt, instead, the second interrupt is called. The program returns to
the interrupted program sequence only after the interrupt chain has been pro-
cessed.[21]

Late arrivals

If during the preparation for the handling of an interrupt (saving the registers on
the stack) an interrupt with a higher priority occurs, the processor will handle the
higher priority interrupt first and then proceed with the tail chaining. This saves
a stacking sequence. [21]

In the following example, an NVIC has 4 group priority levels and 4 sub-priority lev-
els. Four interrupts have been configured for the example. The interrupt priorities are
configured according to the scheme {group priority, sub priority}.

• Interrupt 1 {3, 0}

• Interrupt 2 {1, 0}

• Interrupt 3 {1, 1}

• Interrupt 4 {1, 2}

The Interrupt Request (IRQ)s occur in a temporally separated manner as shown in
Figure 2.4. Each interrupt results in an Interrupt Service Routine (ISR).
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Figure 2.4: Timed processing of interrupts of different priorities

In the beginning, IRQ2 occurs during the processing of the main. While ISR2 is exe-
cuted, IRQ4 occurs first and then IRQ3. IRQ3 and IRQ4 have the same group priority.
But IRQ3 has the lower sub priority. For this reason, ISR3 is executed first and after-
ward ISR4. After ISR4 is executed the main is executed further. In the second half,
IRQ1 occurs. ISR1 starts but is interrupted after a while by IRQ2, the reason being that
IRQ2 has a higher group priority. After ISR2 has been processed, the program returns
to ISR1. When ISR1 is finished, the program returns to the main.

2.6 Direct Memory Access

DMA refers to data access that has to take place directly between the storage device
and the main memory. [22]

The DMA controllers are devices that perform data transfers on behalf of the CPU.
The DMA controller can write data directly from an I/O device to a memory, or write
data directly from a memory to an I/O device or transfer data directly from memory to
another memory. [22]

The DMA controller typically manages multiple DMA channels that can be individ-
ually programmed. By activating a hardware DMA request signal, I/O peripherals
used for data acquisition can usually signal the DMA controller that data needs to be
read or written. Each channel’s hardware DMA request signal is passed to the DMA
controller, which monitors and handles this signal like how a processor monitors and
handles an interrupt. The DMA controller’s response to a DMA request is to perform
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one or more data transfers. To enable the DMA controller’s data transfer, the processor
must enable the DMA channels. [22]

DMA controller is operating exactly like the CPU on the system memory and the
I/O bus. The DMA controller operates as bus master as well as a bus slave. If the
DMA controller operates as bus master, the DMA controller takes over the system bus
(control, address, and data lines) from the CPU to transfer the data. [22]

The block diagram of the DMA controller of the STM32MP157 board is shown in
Figure 2.5.

Figure 2.5: Block diagram showing the DMA controller of the STM32MP157
board [24, p. 1193]

The DMA controller implemented in the STM32MP157 executes the direct data trans-
fer as master via the Advanced High-performance Bus (AHB). It is possible to program
the channels for the following transactions:

• Memory to peripheral
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• Peripheral to memory

• Memory to memory

The DMA controller has an AHB master port for accessing the memory, and another
AHB master port for accessing the peripherals. To enable the DMA controller to per-
form memory to memory transmissions, the peripheral port also has access to the mem-
ory. The DMA controller is programmed via the AHB slave port. [24]

2.7 Serial Peripheral Interface

This section describes the SPI. SPI is a master-slave based serial communication pro-
tocol, with a data rate between 2 and 25 Mbps. SPI is generally used for communi-
cation between connections of devices on the same Printed Circuit Board (PCB). SPI
classically uses 4 lines for communication. These communication lines are the clock,
data input, data output, and slave select lines. For SPI connections, three frame for-
mats are state of the art. These three frame formats are called Motorola SPI, National
Semiconductor Microwire, and Texas Instruments Synchronous Serial Interface. [23]

SPI was first created by Motorola. [25]

Then Texas Instruments and National Semiconductor created their frame formats. [26]

Since master and slave each have a data line for sending and receiving, it is possible
to create a parallel-serial data transfer. The SPI master sets the clock via clock line. If
the master generates the slave select signal, the master sends one bit on the data output
line and receives one bit on the data input line at each clock period. This leads to a
full-duplex communication between master and slave. [23]

Master Slave

SPIDAT1

SPIDAT1SPIBUF

SPIBUF

SPICLK SPICLK

CPU/DMA

Write

CPU/DMA

Read

CPU/DMA

Write

CPU/DMA

Read

Figure 2.6: SPI routing

18



2 Foundations/Theory

2.8 Universal Measurement Protocol

If a parameterization, as well as the simultaneous logging of measurement signals has
to be done at runtime of a system, on an Electronic Control Unit (ECU), a rapid pro-
totyping platform, or a Dynamic Link Library (DLL) on a Personal Computer (PC), a
physical connection of the system to a development tool is required. Such a physical
connection can be the XCP. The “X” of the abbreviation XCP stands for the exchange-
ability of the transport layer. [27]

The XCP is standardized by the ASAM MCD-1 XCP standard. [28] The Association
for Standardization of Automation and Measuring Systems (ASAM) is an association
of more than 350 companies in the automotive sector, and has set themselves the task
of testing and standardizing toolchains in the automotive industry. [29]

The main objectives in the development of XCP have been a reduction of CPU load,
Random-Access Memory (RAM) consumption and flash memory consumption on the
XCP slave, as well as a maximization of the data transmission rate on the transport bus.
XCP operates using memory type-specific access to read and write data. The standard
defines access to parameters and measured variables by memory addresses. The access
and interpretation of the data is described by the A2L file. [28]

The A2L file is ASCII readable, it defines interface-specific measurement and calibra-
tion parameters, as well as storage schemes, events, and conversion rules. [27]

This avoids the need for a hardcoded data access implementation on the ECU. Cali-
bration and measurement data are stored in a generic XCP stack. [28]

The ECU receives memory access requests from the calibration system at runtime. The
ECU responds to these memory access requests. This type of memory access allows
different calibration and measurement tasks to be performed by different configura-
tions of the calibration system without having to modify and recompile the code of the
ECU. The XCP contains transport layer definitions for Ethernet (UDP/IP and TCP/IP),
USB, FlexRay, CAN, and serial connections (SPI and SCI). [28]

The XCP is a packet-based master-slave principle. The calibration system is the host
and the ECU is the slave. A slave can only communicate with one master. The master
can communicate with several slaves. An example XCP bus structure is shown in
Figure 2.7. [27]
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Figure 2.7: An example of a master-slave topology (cf. [27, p. 15])

An XCP message can be divided into two categories:

Command Transfer Object (CTO)

CTOs transmit commands. They are sent from the master to the slave. The slave
reacts with a positive or negative response. Commands are for example CONNECT,
UPLOAD, DOWNLOAD, MODIFY_BITS. These commands are each assigned to a
unique number. [27]

Data Transfer Object (DTO)

DTOs are used for the exchange of synchronous measurement and adjustment data.
The slave sends data synchronously to internal events via Data Acquisition (DAQ). [27]

DAQ is a measurement method that is used to transfer DTOs from slave to master. The
Data exchange via DAQ is processed as follows:

The data exchange of DTOs is divided into two phases. An initialization phase includes
the master instructing the slave which data have to be sent in response to the various
events. At the end of the initialization phase, the master starts the measurement phase
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at the slave. In the measuring phase the slave sends the requested data to the master.
This happens without the request from the master. The measurement continues until a
stop command is sent from the master to the slave. The data stream from the master to
the slave also occurs in two phases. During initialization, the master advises the slave
which data it will send during the measurement phase. During the measuring phase,
the master sends the data to the slave, which transfers this data to the application. [27]

A DAQ-list is created from several Object Descriptor Table (ODT)s. To identify mea-
suring objects unambiguously, their address and length are important. These two pa-
rameters are stored in an ODT.

Schematic Figure 2.8 shows the structure of an ODT. [27]

RAM Cells

ODT

0 address, length

1 address, length

2 address, length

3 address, length

...

PID 0 1 2 3 ...

Figure 2.8: Assignment of memory locations of the slave to DAQs by ODTs (cf. [27,
p. 38])

Several ODTs are combined into one DAQ list. As seen in Figure 2.9.

21



2 Foundations/Theory

ODT

0 address, length

1 address, length

2 address, length

3 address, length

...

ODT

0 address, length

1 address, length

2 address, length

3 address, length

...

ODT

0 address, length

1 address, length

2 address, length

3 address, length

...

ODT #2

ODT #1

ODT #0

PID = 2 0 1 2 3 ...

PID = 1 0 1 2 3 ...

PID = 0 0 1 2 3 ...

Figure 2.9: Example DAQ-list from three ODTs (cf. [27, p. 39])

2.9 CMake

CMake is a compiler-independent opensource system that manages the build process
within an operating system. CMake was developed to fill the need for a cross-platform
build environment for the Insight Segmentation and Registration Toolkit. The first im-
plementation was done in 2000, when Bill Hoffman of Kitware took some of the key
ideas from pcmaker, an earlier system, and extended them. CMake is extensible, and
designed to have the ability to be used in conjunction with the native build environ-
ment. CMake works by placing configuration files in those source directories that are
needed for the build process. These files are called CMakeLists.txt. Through these con-
figuration files, standard build files such as makefiles on Unix and projects/workspaces
on Windows Microsoft Visual C++ (MSVC) are created. These standard build files
created by the configuration files compile source code, create wrappers, build libraries
and executables. Libraries can be built static or dynamic by CMake. Through the sup-
port of in-place and out-of-place builds, multiple build processes can be created from
one source tree. [30]

2.10 Simulink code generation process

In this section, an overview of the code generation process of MATLAB Simulink [8]
is given.

The base of the code generation process using MATLAB Simulinkis is the System Tar-
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get File (STF). The STF contains information about the code generation sequence of
the process. In the STF, variables can be defined that are needed during code genera-
tion, such as the Target Language Compiler (TLC) variable that define the code format.
STFs have the ability to inherit the properties of other STFs through inclusion. STFs
are TLC files. [31]

TLC files are the files that control the way code is generated. They allow to gener-
ate platform specific code or to make adjustments in terms of runtime, code size or
compatibility. [32]

Figure 2.10 shows in which code generation step TLC files are used.

Simulink

model.slx

Simulink

Coder Build

Target Language 

Compiler

Make

model.elf

Simulink Coder

TLC program:

 System target file

 Block target files

 Inlined S-function target 

files

 Target Language 

Compiler function 

library

Run-time interface support 

files
model.mk

model.c

model.rtw

Figure 2.10: Position of the TLC file in the code generation process (cf.[32])

In figure 2.10 the code generation process of a simulink model (model.slx) to an
executable (model.elf) for a hardware processor is presented.

The Simulink Coder creates a model.rtw file from a Simulink model. The .rtw-file

23



2 Foundations/Theory

describes inputs, outputs, parameters, memory, states and other model components and
their properties. The created model.rtw is then processed as input in the TLC. [33]

The Target Language Compiler generates source files and Makefile files from the .rtw
file depending on the specified .tlc files. That can be seen in figure 2.11. The
Makefile is used to build the source files into an executable. [32]

model.rtw

Target Language 

Compiler

Simulink Coder

model.slx

Target files

*.tlc

model.mk model.cGenerated makefile Generated source 

code files

Figure 2.11: Schematic representation of processing the model.rtw file during code
generation (cf.[32])

2.11 Kalman filter

The Kalman filter is a filter that computes states of a system for linear discrete-time
signals by measuring noisy and partially redundant signals, using stochastic estimation
techniques. Compared to many other stochastic estimation methods, the Kalman filter
can be constructed iteratively and is therefore suitable for use in real-time systems. For
the use of the Kalman filter, basic knowledge about state-space models is required. [34]

These are taken for granted in this chapter. Educational material on state-space models
are available in sources [34, p. 23] [35, p. 633] [36, p. 16].

For the use of the Kalman filter, a system is required that has, for example, three inter-
related variables. Of these three variables, two are measured and one is estimated. In
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this example these variables are the measured acceleration a(t), the estimated velocity
v(t) and the measured position h(t). [34, p. 8]

a(t) = v̇(t) = ḧ(t) (2.7)

This model is inserted into the state-space model. The equations of the state-space
model are given in equation (2.8a) (state differential equation) and equation (2.8b)
(output equation). [34, p. 7]

ẋ(t) = A · x(t)+B ·u(t)+G · z(t) (2.8a)

y(t) =C · x(t)+D ·u(t) (2.8b)

Where x(t) is the state vector, u(t) is the input vector, y(t) is the output vector, z(t) is
the system noise/process noise, A is the system matrix, B is the input matrix, C is the
output matrix, D is the feedthrough matrix and G is the matrix of the system noise. [34]

If the state vector x(t) is now defined as shown in equation (2.9a), this results in the
derived state vector ẋ(t), shown in equation (2.9b). [34, p. 8]

x(t) =

h(t)

v(t)

a(t)

 (2.9a)

ẋ(t) =

ḣ(t)

v̇(t)

ȧ(t)

=

v(t)

a(t)

0

+
0

0
1

 · z(t) (2.9b)

In equation (2.9b) it is simplified that the derivative of a(t) results in zero. The change
of a(t) is taken into the system description by the system noise z(t). [34]

If now the state-space equations are set up, taking into mind that the output vector y(t)

consists of the measured quantities h(t) and a(t), the result is: [34, p. 8]
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ẋ(t) =

0 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

A

·x(t)+

0
0
0


︸︷︷︸

B

·u(t)+

0
0
1


︸︷︷︸

G

·z(t) (2.10a)

y(t) =

[
h(t)

a(t)

]
=

[
1 0 0
0 0 1

]
︸ ︷︷ ︸

C

·x(t)+

[
0
0

]
︸︷︷︸

D

·u(t) (2.10b)

Discretization of the state-space model

To apply the filter to a digital system with a sampling time of Ts, it is necessary to
transform the state-space model into the discrete-time domain. This is done with the
help of the following equations: [34, p. 9]

Ad = eA·Ts, Bd =
∫ Ts

0
eA·v ·Bdv, Gd = Ad ·G (2.11)

The equations for the state-space model are then: [34, p. 9]

x(k+1) = Ad · x(k)+Bd ·u(k)+Gd · z(d) (2.12a)

y(k) =C · x(k)+D ·u(k) (2.12b)

Results: [34, p. 9]

Ad =

1 Ts
Ts
2

0 1 Ts

0 0 1

, Bd =

0
0
0

, Gd =


T 2

s
2

Ts

1

 (2.13)
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Observability of the system description

Before the Kalman filter can be applied to any system description, it is necessary
to check whether the observability of the system is given. Observability describes
whether, with a known input variable u(t) and a known output variable y(t), each state
of the system can be determined within finite time. [34]

For a system to be observable, the observability matrix SB must have rank n for a
system of n-order: [34, p. 10]

SB =



C

C ·A
C ·A2

...

C ·An−1

 (2.14)

To ensure that the discretized system is also observable, this should be tested on the
discretized system. [34] The observation matrix for the discretized system S∗B is shown
in equation (2.15): [34, p. 11]

S∗B =



C

C ·Ad

C ·A2
d

...

C ·An−1
d

 (2.15)

As soon as S∗B has rank n, the system is observable. [37]

For the example system of a(t), v(t), h(t) (n = 3), the rank of S∗B is formed as fol-
lows: [34, p. 11]

Rang(S∗B) = Rang

Ö C

C ·Ad

C ·A2
d


è

= 3 (2.16)
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If it is assumed that Ts > 0, the system of equations can be solved. The example is
observable, because the rank of the observation matrix is equal to the order n of the
system. [34]

System and measurement noise

When using a Kalman filter, it is necessary to identify the system and measurement
noise. System errors are caused by model inaccuracies, measurement errors by noise
of the sampled signal. It is only necessary to determine the variance of the errors. It is
assumed that the noise sources are without mean values. [34]

In the example it is assumed that the derivative of a(t) results in zero, and possible
changes are described by the noise quantity z(k). From the system noise, the variance
Q(k) can be determined as shown in eq2: [34, p. 12]

Q(k) = Var(z(k)) = σ
2
v (2.17)

Since in the example, only one noise quantity appears in the modeling, the random
quantity z(k) and thus also the variance Q(k) are scalar. [34]

In the design of the Kalman filter, it is assumed that the estimation error and system
noise are uncorrelated. If further assumptions are made, the noise is without mean
value, normally distributed, and the noise is white noise, the variance can be estimated
as in the following example. [34]

Example: [34, p. 13] Maximum acceleration delta 10 ms−2 during Ts Maximum accel-
eration change is equal to 3 ·σ
Calculation: [34, p. 13]

Q(k) = σ
2
v =
Ä

10m
3s2

ä2
≈ 11.1m2 s−4 (2.18)

Measurement noise is generated, for example, by the quantization of signals or by
other disturbances. To include measurement noise in the system, the measurement
noise v(k) is superimposed on the output signal. The discrete system is then described
as shown in equation (2.19b). [34, p. 13]
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x(k+1) = Ad · x(k)+Bd ·u(k)+Gd · z(d) (2.19a)

y(k) =C · x(k)+D ·u(k)+ v(k) (2.19b)

It is important to note that the input vector u(t) remains unchanged and that the esti-
mation error and the measurement noise must be uncorrelated. If it is further assumed
that the measurement noise is a noise without mean value, normally distributed, and
white noise, the expected value E(v(k)) = 0. [34]

The equation for calculating the variance of the measurement noise is given in equa-
tion (2.20). [34, p. 14]

R(k) = Var(v(t)) (2.20)

If the input signals of the example are assumed to be without mean value, normally
distributed, their variances can be calculated by Var(vh(k)) = σ2

h and Var(va(k)) =

σ2
a . [34]

Furthermore, it is assumed that the two measurement noise variables do not influence
each other, which means that they are stochastically independent. It follows that their
covariance Cov(vh(k),va(k)) is equal to zero. [34]

If the measurement noise values remain the same over time or change only in-
significantly, then the variance σ2

h and σ2
a can be estimated empirically by equa-

tion (2.21). [34, p. 14]

Var(x) =
1

n−1
·

n

∑
k=1

(x(k)−E(x))2 (2.21)

If σ2
h ≈ 20m2 and σ2

a ≈ 0.2m2 s−4 are estimated for the example, R(k) is calculated as
follows: [34, p. 14]
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R(k) = Var(v(k)) =

(
Var(vh(k)) Cov(vh(k),va(k))

Cov(vh(k),va(k)) Var(va(k))

)
(2.22a)

=

(
σ2

h 0
0 σ2

a

)
≈

(
20m2 0

0 0.2m2 s−4

)
(2.22b)

The variance R(k) describes how reliable the measured values are. In most cases,
the state variables will change only slightly, if the noise variables are not estimated
correctly. [34]

Kalman filter equation

The principle equations developed by Kalman are shown in equation (2.23) and equa-
tion (2.24) and are taken from [34, p. 15].

Correction:

ŷ(k) =C · x̂(k)+D ·u(k) (2.23a)

∆y(k) = y(k)− ŷ(k) (2.23b)

K(k) = P̂(k) ·CT · (C · P̂(k) ·CT +R(k))−1 (2.23c)

x̃(k) = x̂(k)+K(k) ·∆y(k) (2.23d)

P̃(k) = (I−K(k) ·C) · P̃(k) (2.23e)

Prediction:

x̂(k+1) = Ad · x̃(k)+Bd ·u(k) (2.24a)

P̂(k+1) = Ad · P̃(k) ·AT
d +Gd ·Q(k) ·GT

d (2.24b)

The derivation of the Kalman equation can be found under [34, p. 85].

In the Kalman equations (2.23) and (2.24), it can be seen that an x̂(t), and an x̃(t)

vector are calculated. The state vector x̂(t) is the predicted state vector, and x̃(t) is the
corrected state vector.

The Kalman filter is accessed as follows: [34]
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1. Calculation of the difference ∆y(k) between the output variable ŷ and the current
y, seen in equation (2.23b)

2. The Kalman gain K(k) is calculated in equation (2.23c) to correct the estimated
state vector x̂(k), by computing the corrected state vector x̂(t) in equation (2.23d)

3. In equation (2.23e) the covariance of the estimation error ε(k) is calculated, the
estimation error is the difference of ε̃(k) = x(k)− x̃(k).

4. In equation (2.24b), the covariance of the estimation error P̂(k) is extrapolated.

By using equation (2.23a), equation (2.23b), equation (2.23c), equation (2.23d), equa-
tion (2.23e), equation (2.24a), and equation (2.24b), the velocity can be estimated from
the example.
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In order to determine the requirements of a mechatronic system, the CONceptual de-
sign Specification technique for the ENgineering of complex Systems (CONSENS)
method initially sets up an environment model. Subsequently, requirements can be
specified from the environment model. [38]

The environment model created for this purpose can be seen in Figure 3.1. It is in-
tended to represent the information flows between the individual components. The
energy flows are neglected in this environment model. The environment model pro-
vides an overview of which interfaces are implemented.

The entire requirement specification, can be found in the item A.1.1.

The requirements specification also includes customer specifications. For example, the
firmware, that is executed on the Arm-based Cortex-M4 core, must be created by code
generation using MATLAB/Simulink. In Simulink, the model must be monitored in
External mode via XCP on TCP/IP. The External mode must also provide the ability
to tune model parameters during runtime.

3.1 Environment model

The environment model in Figure 3.1 shows the Microprocessor Unit (MPU), repre-
sented in a blue system element. This figure does not show that there are two inde-
pendent processors within the system element STM32MP1. This is illustrated in the
hardware components connection map in chapter 4 figure 4.3.

The used hardware components of the self-balancing robot are explained in more de-
tail in the Figure 5.6. The physical connection between the MPU and the hardware
components of the self-balancing robot is established by a connection board.

Sensors and actuators constitute the most important environment elements. They are
located on the driver board of the self-balancing robot. [39]
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Figure 3.1: Environment model

3.2 Application scenarios

The applications scenario can be divided into two points:

Model-based design: Using MATLAB Simulink for rapid prototyping on the Cortex-
M4.

The example application: The implement of software components for the balancing
control of the self-balancing robot is used to show that the developed Simulink
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target matches real-time boundaries. The application shows also the advantages
of heterogeneous multiprocessor platforms.

3.3 System Requirements

The requirements specification A.1.1 lists all requirements for the software compo-
nents for the MATLAB Simulink target for the STM32MP1 to be developed. The
requirements for the development of software components for the example applica-
tion are also listed in the requirements specification. The example application is a
software to control the self-balancing robot. This example application is intended
to show that the developed MATLAB Simulink target can match real-time require-
ments. item A.1.1.

The requirements specification lists the requirements, their risks, and the methods used
to verify these requirements. The purpose of the requirements specification is to cap-
ture all requirements that are defined for the software components because it is neces-
sary to verify if the requirements comply with the implementation.
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The design process is divided into two sections. The first section describes the design
of the MATLAB Simulink coder target for the real-time system, which is executed on
the Cortex-M4 processor, and the design of a data bridge, whose task is the data ex-
change between the MATLAB development computer and the real-time system. This
data bridge is executed on the Cortex-A7 processors. The second section describes
the design of an example real-time application. Within this application, an inverted
pendulum is to be controlled. The real-time capability of the system is demonstrated
by this control. In addition, a graphical user interface for parameter visualization and
the ability of input parameter adjusting is designed. The addition graphical interface is
not a subject of the real-time System. The main task of the graphical application is to
demonstrate that during the independent execution of the real-time application on the
Cortex-M4, all the advantages provided by an embedded Linux system could be used.

4.1 Design of the Simulink coder target

One of the main decisions in the design process and the design of the software architec-
ture is defined by the requirements specification item A.1.1. The Req_01 specifies that
the model step must be called by a timer interrupt. In the previous coder target [40],
the model step is called by a FreeRTOS [41] task. Req_02 specifies that external mode
via XCP must be integrated into the Simulink code generation process.

According to [31] models can be executed in real-time on the target hardware if the
model step is managed by a real-time operating system, or if the model step is called
in the context of an ISR on bare-metal target hardware.

The planning therefore provides that the model step is called by a timer interrupt. The
design of how the model steps are to be called is shown in figure 4.1.
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Figure 4.1: In the upper image area, the call of the model step is shown. Separately
from this area, it can be seen that further peripheral interrupts can occur
independently from the processing of the model step.

To enable the generation of asynchronous hardware interrupts, a hardware interrupt
block must be created. The asynchronous interrupts are used to read or to write data.
The implementation of asynchronous interrupts is described in section 5.4.

The data packages of the external mode must be sent via the TCP/IP over Ethernet or
Universal Serial Bus Host (USBH). According to [14] it is not possible to map these
interfaces to the Cortex-M4 processor of the STM32MP1. This makes it necessary to
route the XCP messages via the shared memory over the Cortex-A7 processor. This
Cortex-A7 processor must pass the messages bi-directionally via a TCP/IP server to
the host computer on which the Simulink process is executed. This requires a connec-
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tion between the development computer and the Cortex-A7 processor. To create this
connection a TCP/IP server is set up on the Cortex-A7. The host computer is the client
for the TCP/IP connection. The XCP master is executed on the host computer [42], the
Cortex-M4 processor assumes the role of the client for the XCP connection. From the
XCP point of view, the Cortex-A7 processor only passes the messages and does not
participate in the actual XCP communication.

The communication process described, is shown in figure 4.2.

Simulink Process

TCP/IP Client

mexFunction

Cortex-A7

Cortex-M4

TCP/IP Server

XCP msg. forwarding

XCP Driver

TCP/IP on Ethernet

XCP-Master

XCP-Slave

Data in target formatheader

External Mode/XCP Message Format

Target

Figure 4.2: Communication design for the implementation of the External Mode com-
munication using XCP over TCP/IP

4.2 Design of the distributed system

The design of the distributed application is based on a closer look at the existing hard-
ware. Thereby it is extracted how the individual hardware devices must be controlled.

37



4 Software design

After considering the control of the hardware devices, the hardware component con-
nection diagram shown in figure 4.3 is drawn up.

This plan shows how the hardware has to be connected to the peripheral devices of
the STM32MP1. During this mapping process, it must be decided if the hardware
devices are assigned to the real-time capable system (firmware running on the Cortex-
M4) or to the system running the Linux operating system (application running on the
Cortex-A7).
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Figure 4.3: Hardware components connection map

Figure 4.3 shows a schematic diagram of the STM32MP1 MPU on the top of the pic-
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ture in the gray box. The Cortex-M4 processor is shown in the gray box on the left side.
It is connected to the Cortex-A7 processor via the SRAM block. Below the processors,
the required peripheral hardware of the STM32MP1 is shown schematically. These are
connected to the yellow environment elements. These represent the given hardware of
the self-balancing robot, as well as the user and the development computer.

The decision whether to assign the yellow environment elements to the Cortex-M4 or
the Cortex-A7 is based on several criteria:

1. Which processor can the hardware peripheral block of the MPU be assigned to
during pin configuration via STM32CubeMX 4.1

2. Is it important that the element is integrated into the real-time capable applica-
tion? 4.2

3. On which processor is the estimated implementation effort minimized?4.3

Table 4.1 were collected by using STM32CubeMX [43] via the STM32CubeMP1
v1.4.0 ecosystem [44].

Hardware peripheral block ARM Cortex-M4 Dual ARM Cortex-A7
SPI yes yes
Timer yes yes
GPIO yes yes
ADC yes yes
Network interface no yes
Touch display no yes

Table 4.1: Mapping of hardware configuration possibilities using STM32CubeMX

Table 4.2 is based on information that was collected in the requirement specification
A.1.1.

Interfaces Real-time capability
Accelerometer, gyroscop sensor yes
Hall sensor 1 & 2 yes
Motor driver yes
Battery voltage no
Ultrasonic sensor yes
Development computer no
User no

Table 4.2: Interface real-time capability required
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The information shown in table 4.3 cannot be reconstructed. It is based on the empiri-
cal values collected within preliminary projects at the STM32MP1 MPU.

Hardware peripheral block Effort on Cortex-M4 Effort on dual Cortex-A7
SPI medium high
Timer low medium
GPIO low low
ADC medium high
Network interface not possible low
Touch display not possible medium

Table 4.3: Estimated implementation effort on Arm-based Cortex-M4 compared to the
estimated implementation effort on Arm-based dual Cortex-A7

The assignment of the hardware peripheries to the processors is derived from ta-
bles 4.1, 4.2, and 4.3. This assignment is shown in figure 4.3.

After assigning the peripheries to the processors, the applications for the two proces-
sors are planned. This is described in the following section 4.2 and section 5.9.

Design of the real-time application

The real-time application, is implemented by the MATLAB Simulink target.

To control the hardware peripheral blocks assigned to the real-time system by MAT-
LAB Simulink, hardware-related Simulink blocks are developed for these peripheries.
For this, the functions, shown in table 4.4 must be provided by hardware-related
Simulink blocks.

Hardware peripheral block Function

SPI
Sending data packages
Receiving data packets

Timer
Set PWM

Get Counter

GPIO
Set outputs
Get inputs

ADC Get ADC data value
Table 4.4: Planned hardware-related Simulink blocks
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The implementation of the hardware-related Simulink blocks is described in sec-
tion 5.5.

To develop a concurrent real-time application, the polling, explained in section 2.4, has
to be avoided. To banish polling from the application, the implementation of hardware
specific interrupts and DMA is used. The real-time application is divided into serveral
ISRs. During the following consideration all occurring ISRs are called tasks.

To perform scheduling, the required tasks are analyzed. The tasks are shown in ta-
ble 4.5. This requires the implementation of the hardware-related Smulink blocks.

To analyze the task, the system priority of the task is configured with the lowest ad-
justable system priority. To be able to observe the times when the task is active from
the outside, a GPIO is set to the high level at the beginning of the task, and the GPIO
is reset when the task is completed. At the toggling GPIO, the duration, as well as the
periodicity of the task, can be analyzed by using a high-frequency oscilloscope 4.7.
The firmware used for analysis is generated with the external mode and with the use
of the compiler optimization -O3.
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Task no. i Task short description
0 Model task, executes the generated Simulink model.

1
Sensor has values task, detects when in the values of the MPU6500 are
ready for reading.

2
Sensor values received task, the task is executed when the sensor data
has been received via DMA.

3
Sensor value request transmission commplet task, the task is executed
when data has been transmitted to the MPU6500.

4 Set PWM Values task, the task sets the PWM Duty Cycle.

5
Get Timer Task, the task reads the counter register of the timer and the
level of a GPIO pin.

6
Get Timer Task, the task reads the counter register of the timer and the
level of a GPIO pin.

7
IPCC message received task, the task detects whether a message has
been received from the main processor.

8
ADC half received task, the task signals that the half data of the ADC
DMA transmission has been done.

9
ADC complete received task, the task signals that the complete ADC
DMA transmission has been done.

10 Get Timer Task, the task reads the counter register of the timer.
11 Get Timer Task, the task reads the counter register of the timer.

12
IPCC message received task, the task detects whether a message has been
send from the main processor.
Table 4.5: List of required tasks in the real-time application

To provide an overview, table 4.6 assigns the tasks to the respective hardware compo-
nents.
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Hardware component Interrupt source Task no.
Simulink model Timer 0

EXTI 1Accelerometer,
gyroscop sensor DMA-Streams 2, 3
Motor driver Timer 4
Hall encoder 1 Timer 5
Hall encoder 2 Timer 6
Development Computer IPCC 7
Battery voltage
measuring point DMA-Stream 8, 9

Ultrasonic sensor Timer 10, 11
User IPCC 12

Table 4.6: Overview of tasks, hardware components and interrupt sources

Table 4.7 shows the high-frequency oscilloscope used for the analysis of the tasks.

Measuring device KEYSIGHT MSOS054A

Series number MY57160102

Inventory number 170722

Table 4.7: Measuring device

Table 4.8 shows the measured period times Ti and the worst case execution time Ci in
µs. The measurements were taken with the measuring instrument shown in table 4.7.

In table 4.8 it can be seen that in column Ti the tasks τ0, τ4, τ8 τ9, τ10, and τ11 have been
assigned the value vari. This is because these tasks are dependent on time-variable
events.
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Task no. i Ti / µs Ci / µs
0 vari 99.818
1 999.47 46.467
2 997.62 5.4812
3 997.91 4.0167
4 vari 6.8316
5 501.57 4.1124
6 501.57 4.1124
7 1000000 2.9357
8 vari 4.6819
9 vari 4.6437

10 vari 6.4102
11 vari 6.4102
12 8907.7 1.2778

Table 4.8: Period Ti and worst-case execution time Ci of task system τ

Dependencies of the time-variable events:

Task τ0: T0 of τ0 depends on the model step of the control system. This is determined
in section 5.8.

Task τ4: τ4 defines how often the Pulse Width Modulation (PWM) value of the motors
is set. The T4 value can be set via the block mask parmeter Frequency (= 1/T4),
shown in figure 5.15, of the block from section 5.5.

Task τ8: T8 depends on how fast the ADC data request block 5.5 is called. The sample
time of the block position within the Simulink model determines T8 (for example,
ADC data request block on Simulink root: T8 = model sample time).

Task τ9: T9 = T8 the period time of τ9 behaves like the period time of τ8

Task τ10: T10 depends on the trigger frequency of the ultrasonic sensor. It is triggered
by a GPIO pin. The trigger period is defined by a square wave signal as shown
in figure 5.49.

Task τ11: T11 = T10 the period time of τ11 behaves like the period time of τ10

In figure 4.4 the worst case execution time Ci of the tasks are visualized.
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Figure 4.4: Worst case execution time Ci of the required tasks τi

When planning the scheduling of the real-time tasks, it is assumed that the release
time ri, is negligibly small. The calculated utilizations ui, as well as the total utilization
Usum, are calculated in table 4.9 for RM and DM. The deadlines used for the calculation
of the total utilization Usum of DM are taken from the requirements (Req_05, Req_06,
Req_07, Req_08, Req_09 A.1.1). In the calculation of the total utilization Usum of RM,
equation (2.1) applies to the task utilizations ui and equation (2.3) to Usum. For DM,
the task utilizations are calculated by Ci/Ti, and Usum is calculated by equation (2.6).

45



4 Software design

Task no. i Ti / µs Ci / µs Di / µs RM ui DM ui
0 1000 99.818 500 0.099818 0.19964
1 997.47 46.467 500 0.046492 0.092934
2 997.62 5.4812 500 0.0054943 0.010962
3 997.91 4.0167 500 0.0040251 0.008033
4 500 6.8316 100 0.013663 0.068316
5 501.57 4.1124 50 0.0081991 0.082248
6 501.57 4.1124 50 0.0081991 0.082248
7 1000000 2.9357 1000 2.936E-06 0.002936
8 1000000 4.6819 1000 4.682E-06 0.004682
9 1000000 4.6437 1000 4.644E-06 0.004644

10 100000 6.4102 100 6.41E-05 0.064102
11 100000 6.4102 100 6.41E-05 0.064102
12 8907.7 1.2778 1000 0.0001434 0.001278

Usum ≈ 0.186 0.686
Table 4.9: Calculation of task and total utilization for RM and DM

The maximum permissible total utilization Usum for n = 13 tasks is calculated accord-
ing to equation (2.3) in equation (4.1).

Usum ≤ 13(21/13−1)≈ 0.712 (4.1)

The total utilizations Usum calculated in table 4.9 are smaller than the value resulting
from equation (4.1). Therefore, they are permissible. Since deadlines are defined in
the requirements, DM is applied. The priority is now assigned according to the size of
the deadline Di of the task, described in section 2.3. If the deadlines are the same, the
task with the higher utilization is prioritized. The lowest assigned priority value has
the highest priority. Tasks that are called via the same interrupt or that have the same
deadline get the same interrupt priority.

The assignment of task priorities is shown in table 4.10.
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Task no. i Priority value
0 4
1 5
2 6
3 7
4 2
5 1
6 1
7 9
8 8
9 8

10 3
11 3
12 9

Table 4.10: Task priority assignment

The priority values of table 4.10 specify the interrupt priorities which are inserted into
the interrupt blocks during model development 5.7.

Design of the non real-time application

When designing the non real-time application, the following points must be observed:

• The XCP messages must still be passed to the Application.

• A graphical application must be implemented that allows the user to monitor and
tune model parameters.

During the software design 4 tasks are identified:

Task 1: Graphical application and sending set model parameters to the Cortex-M4.

Task 2: Receiving model parameters intended for display in the graphical application.

Task 3: Receiving XCP messages from the Cortex-M4 and forwarding them via
TCP/IP to the development computer.

Task 4: Receiving XCP messages from the development computer and forwarding
them to the Cortex-M4.

An overview of the planned implementation is shown in figure 4.5.
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Figure 4.5: Schematic diagram of the non real-time application planning

It is planned to execute the task of the graphical application periodically within an idle
loop and to distribute the remaining 3 tasks to threads.
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The software implementation chapter describes the implementation of the Simulink
coder target, the external mode via XCP on TCP/IP, the Simulink blocks, the real-
time firmware, the non-real-time application, and the build process of the real-time
firmware.

5.1 Customization of a Simulink target for the

Cortex-M4

As specified in the technical requirement Req_01 A.1.1, the code executed on the
Cortex-M4 must be generated from a Simulink model using the embedded coder [45].
Some platforms are supported by board support packages, like the STM Discovery
Boards [46], the NXP S32K1 series [47], the Texas Instruments C2000 [48] and the
Raspberry Pi [49]. To give a few examples.

Such a board support package is not available by the time this master thesis is started.
It is still possible to generate code for unsupported platforms by customizing the code
generation process in Simulink. [31]

To understand the code generation process, it is necessary to take a closer look at the
used components.

Implementation of the file customization templat

The STF that has to be selected, according to A.1.1, is the “Embedded coder”
ert.tlc file. To customize the code generation process of the “Embedded coder”
a file customization template is developed.

The file customization template is selected by the “File customization template” option
under “Code generation/Templates”. Figure 5.1 shows that the default file customiza-
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tion template example_file_process.tlc is selected. In figure 5.1 the option
“Generate an example main program” is selected. The main program is generated by
associated TLC files of the option “Target operationg system”. [31]

Figure 5.1: Simulink code generation settings for file customization template and the
option to generate a main program

To write a file customization template, the example_file_process.tlc [50] is
inspected.

The abstract of the file indicates, that it is an embedded coder sample file,
used to supplement the generated source code and create additional files. The
TLC code of the example_file_process.tlc file creates, if the vari-
able ERTCustomFileTest has the value TLC_TRUE, a timestwo.c and a
timestwo.h file. Then a #define is added to the public header of the
model and another #define is added to the private headers of the model. Then

50



5 Software implementation

bareboard_srmain.tlc is included. The example_file_process.tlc

file shows an example of how files can be created by the STF, how code can
be inserted into generated files, and that a TLC file can include other TLC
files. If the variable ERTCustomFileTest does not have the value TLC_TRUE,
the example_file_process.tlc does not affect the code generation pro-
cess. By default, the ERTCustomFileTest variable is commented out, so the
example_file_process.tlc has no effect on the standard code generation pro-
cess. [50]

To determine which file customization templates are already available in Simulink, the
Matlab root directory is scanned. The file customization templates also called coder
targets, are shown in listing 5.1.

1 c o d e r t a r g e t _ b a r e b o a r d . t l c

2 c o d e r t a r g e t _ f i l e _ p r o c e s s . t l c

3 c o d e r t a r g e t _ m a i n w i t h o u t O S . t l c

4 c o d e r t a r g e t _ m u l t i r a t e m u l t i t a s k i n g . t l c

5 c o d e r t a r g e t _ m u l t i r a t e s i n g l e t a s k i n g . t l c

6 c o d e r t a r g e t _ s i n g l e r a t e s i n g l e t a s k i n g . t l c

Listing 5.1: Existing file customization templates from the MATLAB root
directory [51]

After inspecting the existing file customization templates, a custom file customization
templates is developed especially for the Cortex-M4 processor of the STM32MP1.

The file customization templates codertarget_mainwithoutOS.tlc [52] is
the closest to the file customization templates that has to to be developed. There are
also significant differences.

Main differences of the codertarget_mainwithoutOS.tlc [52] and the cus-
tom file customization templates being developed:

• The codertarget_mainwithoutOS.tlc [52] generates a main function.

• The custom file customization templates must not generate a main function, be-
cause the main function is generated from STM32CubeMX.

• The scheduling of the codertarget_mainwithoutOS.tlc [52] is based
on the fact that the timing of the model step is based on the system clock of the
target.
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• The scheduling of the custom file customization templates model step must be
based on a timer interrupt call.

• The codertarget_mainwithoutOS.tlc [52] supports targes that have a
scheduler and targets that do not have a scheduler.

• The custom file customization templates should only support the STM32MP1
Cortex-M4 running without a scheduler.

• The codertarget_mainwithoutOS.tlc [52] supports the use of a boot-
loader background task.

• The custom file customization templates shall not support a bootloader back-
ground task. Instead of a bootloader, the initialization of the hardware of the
STM32MP1 Cortex-M4 shall be initialized by the initialization functions of the
C-project generated by STM32CubeMX.

Main commonalities of the two file customization templates:

• Both file customization templates call the model step function at predefined in-
tervals. Defined at the Solver settings under “Periodic sample time constraint”

• Both file customization templates contain initialization routines. This means the
initialization of the Simulink blocks, as well as the timing configuration of the
model step call.

• Both file customization templates contain functions that integrate the external
mode.

Before presenting snippets of the resulting custom file customization templates, the
model call from the main is shown in figure 5.2. The C code shown corresponds to a
summary of the code that is generated during the generation process.

The main, shown on the left side in figure 5.2, starts with the reset of all periph-
erals, the initialization of the flash interface, and the initialization of the system
clock. After that, peripheral devices like GPIOs and DMAs are initialized. Af-
ter the generated initialization routines of STM32CubeMX are finished, the func-
tion start_model_Task, which is framed in blue, is called. In the function
start_model_Task, seen on the right side in the simulink_model_call.c
file, the initialization of the external mode is done at the beginning. This is followed
by the initialization of the model. Next, the final time of the external mode is config-
ured by the function rtSetTFinalForExtMode and the initialization of the ex-
ternal mode is checked by the function rtExtModeCheckInit. Subsequently, the
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start_model_Task function is paused in the rtExtModeWaitForStartPkt
function until the request of the development computer to start the model is re-
ceived. This pause can be skipped by a define, set in the build process. If a con-
nection error occurs during communication with the development computer in the
rtExtModeWaitForStartPkt function, the variable rtmStopReq is set to 1,
and the execution of the model is interrupted using the rtmSetStopRequested
function. If this is not the case, a start message is sent to the development com-
puter by the function rtERTExtModeStartMsg. The described functions of the
simulink_model_call.c file are taken from the code generation using the
codertarget_mainwithoutOS.tlc [52].
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Periodic call of the model 

step and the external mode
Timer IRQ  

 /******************************

  * @file           : main.c

  * @brief          : Main program body

  ******************************/

/* Includes */

#include "main.h"

 ...

/* Private function prototypes */

void SystemClock_Config(void);

void PeriphCommonClock_Config(void);

__weak void start_model_Task(void);

int main(void)

{

/* Reset of all peripherals,  

 * Initializes the Flash interface 

 * and the Systick. */

  HAL_Init();

 /* Initialize all configured peripherals */

  MX_GPIO_Init();

  MX_DMA_Init();

  ...

  /* CODE END Init */

  start_model_Task();

  /* Infinite loop */

  while (1)

  {

  }

}

/* File:  simulink_model_call.c */

#include "simulink_model_call.h"

 ...

void start_model_Task(void)

{

  /* Initialize external mode */

  rtParseArgsForExtMode();

  /* Initialize the Model */

  MODEL_initialize();

  /* External mode */     

  rtSetTFinalForExtMode();

  rtExtModeCheckInit();

  rtExtModeWaitForStartPkt();

  if (rtmStopReq) {

    rtmSetStopRequested();

  }

  rtERTExtModeStartMsg();

  /* Configure TIM Interrupt to call 

   * MODEL_step periodically */

  Configure_TIM_step_interrupt();

  

  runModel = 1;

  while (runModel) ;

  /* Terminate model */

  MODEL_terminate();

  rtExtModeShutdown();

}

/* Model step interrupt */

void TIMx_IRQHandler(void){

  TIM_Clear_IRQ_Flag(TIMx);  

  if (runModel) {

    /* External mode */

    rtExtModeOneStep();

    if (rtmStopReq) {

      rtmSetStopRequested();

    }

    MODEL_step();

    stopRequested = !((rtmGetErrorStatus() &&

                      !rtmGetStopRequested();

    runModel = !(stopRequested);

  }

  NVIC_ClearPendingIRQ(TIMx_IRQ);

}

void Configure_TIM_step_interrupt(void){

  /* Time base configuration */

  TIM_IRQ_Config(1/SIMULINK_MODEL_FIXED_STEP));

  /* Enable counter */

  TIM_EnableCounter(TIMx);

}

Starts the timer interrupt

Figure 5.2: Illustration how the generated model is called from the STM32CubeMX
C-project
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Then the green framed function Configure_TIM_step_interrupt is called.
This function configures and starts the timer interrupt. If the timer was started there are
timer IRQ occuring periodically. These IRQ call the corresponding interrupt service
routine TIMx_IRQHandler. It is framed in purple. Within the ISR, the Timer IRQ
flag is cleared by the macro TIM_Clear_IRQ_Flag. If the variable runModel
has the value 1 the function rtExtModeOneStep is called first. Within this func-
tion, the XCP background task is executed. If the variable rtmStopReq was set, the
function rtmSetStopRequested is executed. The next function MODEL_step,
framed in red, calls the Simulink model step. After the Simulink model step has been
executed, the functions rtmGetErrorStatus and rtmGetStopRequested are
used to check whether a stop request is present. If a stop request is present, the vari-
able runModel is set to 0. Afterward, the interrupt flag of the NVIC is cleared by the
macro NVIC_ClearPendingIRQ.

After the function Configure_TIM_step_interrupt was called the variable
runModel is set to 1. And the processor remains in the while loop as long as the
variable runModel is not reset. This while loop is periodically interrupted by the
timer interrupt, which calls the external mode and the model step. If the variable
runModel is set to 0 within the timer ISR the functions MODEL_terminate and
rtExtModeShutdown are called. MODEL_terminate contains deinitialization
routines of Simulink blocks or memory frees. The function rtExtModeShutdown
sends a message about the shutdown to the development computer and cleans up the
allocated memory of the external mode. This represents the basic process of a firmware
generated by the embedded coder and the developed coder target.

For the more detailed description of the developed coder target, some TLC directives
must be known.

The first non-empty character of a TLC directive must be a percent sign. For example,
a TLC variable is declared as shown in the first line of listing 5.2. If a TLC variable
should be used as an expression then the variable has to be enclosed in %<>, seen in
listing 5.2. [53]
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1 % a s s i g n s t r i n g = " H e l l o World "

2 % a s s i g n exp r = %< s t r i n g >

3 / * P r i n t o u t %< s t r i n g > * /

4 p r i n t f ( " %<expr >" ) ;

Listing 5.2: TLC variable declarations and use of expressions

For Example the TLC generates from listing 5.2 the code shown in listing 5.3.

1 / * P r i n t o u t H e l l o World * /

2 p r i n t f ( " H e l l o World " ) ;

Listing 5.3: Generated c code from listing 5.2

Two percent signs mark a single line comment. [53]

1 %% Comment

Listing 5.4: TLC single line commands

Single and multi line commands can also be written as seen in listing 5.5. [53]

1 / % Comment

2 % Also comment % /

Listing 5.5: TLC single or multi line command

MATLAB functions are called as seen in listing 5.6. [53]

1 %m at l a b p l o t ( x , y )

Listing 5.6: Using MATLAB functions in TLC files

If conditions can be used for example as shown in listing 5.7. In listing 5.7 the TLC
function ISEQAL is used. This function checks, in this example, whether the parame-
ter i has the value 1.0. [53]

1 % i f ISEQUAL( i , 1 . 0 )

2 / * I f i has t h e v a l u e 1 . 0 t h i s comment i s t r a n s f e r r e d i n t o t h e

code * /

3 % e n d i f

Listing 5.7: Using if conditions in TLC files
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The custom codertarget is called codertarget_STM32MP1.tlc. It starts with a
comment header. Then several TLC variables are created. The most important ones
can be seen in listing 5.8.

1 % a s s i g n srcBaseName = LibGetMdlSrcBaseName ( )

2 % a s s i g n MODELBASERATE = CompiledModel . SampleTime [ 0 ] .

C l o c k T i c k S t e p S i z e

Listing 5.8: Declaration and initialization of TLC variables.

The function LibGetMdlSrcBaseName returns the Simulink model name. [54]

The name of the simulink model is stored in the variable srcBaseName. The model
sample time is transferred from variable
CompiledModel.SampleTime[0].ClockTickStepSize to variable
MODELBASERATE.

The C file simulink_model_call.c from figure 5.2, that is to be generated by
the TLC, needs a header file to include headers, defines and function prototypes. The
creation of this header can be seen in listing 5.9.
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1 %% C r e a t e s i m u l i n k _ m o d e l _ c a l l . h

2 % a s s i g n s i m u l i n k _ m o d e l _ c a l l _ h d r _ f i l e = L i b C r e a t e S o u r c e F i l e (

" Header " , " Custom " , " s i m u l i n k _ m o d e l _ c a l l " )

3 % o p e n f i l e h d r _ i n c l u d e s

4 %% I n c l u d i n g h e a d e r f i l e s

5 / * I n c l u d i n g h e a d e r s * /

6 # i n c l u d e "%<srcBaseName > . h "

7 # i n c l u d e "%<srcBaseName > _ p r i v a t e . h "

8 # i n c l u d e " s tm32mp1xx_i t . h "

9 # i n c l u d e " t im . h "

10 % c l o s e f i l e h d r _ i n c l u d e s

11 % o p e n f i l e h d r _ d e c l a r a t i o n s

12 %% D e c l a r a t e model d e f i n e s and f u n c t i o n d e c l a r a t i o n s

13 / * Model f i x e d s t e p * /

14 # d e f i n e SIMULINK_MODEL_FIXED_STEP %<MODELBASERATE>

15 / * F u n c t i o n p r o t o t y p e s * /

16 vo id s t a r t _ m o d e l _ T a s k ( vo id ) ;

17 vo id TIM7_IRQHandler ( vo id ) ;

18 vo id C o n f i g u r e _ T I M 7 _ s t e p _ i n t e r r u p t ( vo id ) ;

19 % c l o s e f i l e h d r _ d e c l a r a t i o n s

20 %< L i b S e t S o u r c e F i l e S e c t i o n ( s i m u l i n k _ m o d e l _ c a l l _ h d r _ f i l e ,

" I n c l u d e s " , h d r _ i n c l u d e s ) >

21 %< L i b S e t S o u r c e F i l e S e c t i o n ( s i m u l i n k _ m o d e l _ c a l l _ h d r _ f i l e ,

" D e c l a r a t i o n s " , h d r _ d e c l a r a t i o n s ) >

Listing 5.9: Creation of the simulink_model_call.h

The LibCreateSourceFile(type, creator, name) function creates a
new C or C++ file. If the file already exists, the existing file is referenced. Al-
lowed parameters for the input parameter type of the function are “Header” or
“Source”. This parameter determines the file extension (*.c or *.h). The input
parameter creator specifies who creates this file. The input parameter name speci-
fies the name of the file to be created. [54]

The commands %openfile and %closefile create a buffer. This buffer stores the
lines between the command %openfile and %closefile. [53]

The LibSetSourceFileSection(fileH, section, value) function in-
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serts text buffers into a specified section of a file. The input parameter fileH de-
termines into which file the text buffer is inserted. The input parameter section
determines in which section of the file the text buffer will be inserted. Sections are for
example: “Includes” and “Defines”. The input parameter value specifies the
text buffer that will be inserted. [54]

The TLC generates the code shown in listing 5.10 when first listing 5.8 and then list-
ing 5.9 are specified in a TLC-file and a Simulink model named test.slx is opend.

1 # i f n d e f RTW_HEADER_simulink_model_call_h_

2 # d e f i n e RTW_HEADER_simulink_model_call_h_

3 / * I n c l u d i n g h e a d e r s * /

4 # i n c l u d e " t e s t . h "

5 # i n c l u d e " t e s t _ p r i v a t e . h "

6 # i n c l u d e " s tm32mp1xx_i t . h "

7 # i n c l u d e " t im . h "

8 / * Model f i x e d s t e p * /

9 # d e f i n e SIMULINK_MODEL_FIXED_STEP 0 .001

10 / * F u n c t i o n d e c l a r a t i o n s * /

11 vo id s t a r t _ m o d e l _ T a s k ( vo id ) ;

12 vo id TIM7_IRQHandler ( vo id ) ;

13 vo id C o n f i g u r e _ T I M 7 _ s t e p _ i n t e r r u p t ( vo id ) ;

14 # e n d i f

15 / * RTW_HEADER_simulink_model_call_h_ * /

Listing 5.10: simulink_model_call.h file generated by the TLC

The source file simulink_model_call.c is generated in the same way as the cor-
responding header. Therefore, in the following only the generation of the C functions
known from figure 5.2 is described. The complete codertarget_STM32MP1.tlc
is available in the A.1.2.

Listing 5.11 shows the implementation of the start_model_Task function,
by the use of the codertarget_STM32MP1.tlc file.
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1 %% C r e a t e s i m u l i n k _ m o d e l _ c a l l . c

2 . . .

3 vo id s t a r t _ m o d e l _ T a s k ( vo id ) {

4 %<RTMSetErrSta t ( 0 ) >;

5 % i f ExtMode

6 / * I n i t i a l i z e e x t e r n a l mode * /

7 r t Pa r s e A rg s F o rE x t M o de ( 0 , NULL) ;

8 % e n d i f

9 / * I n i t i a l i z e t h e Model * /

10 %<srcBaseName > _ i n i t i a l i z e ( ) ;

11 % i f ExtMode

12 %<SLibGenERTExtModeInit ( ) >

13 % e n d i f

14 % i f ISEQUAL( CompiledModel . S u p p r e s s E r r o r S t a t u s , 0 )

15 runModel = %<ERTStopCheck ( ) >;

16 % e n d i f

17 / * C o n f i g u r a t i o n o f t h e TIM7 i n t e r r u p t * /

18 C o n f i g u r e _ T I M 7 _ s t e p _ i n t e r r u p t ( ) ;

19 / * I d l e w h i l e loop * /

20 w h i l e ( runModel ) ;

21 / * T e r m i n a t i o n * /

22 %<srcBaseName > _ t e r m i n a t e ( ) ;

23 % i f ExtMode

24 r tExtModeShutdown ( %<NumSynchronousSampleTimes >) ;

25 % e n d i f

26 }

Listing 5.11: TLC implementation of the function start_model_Task, according
to [52]

In listing 5.11 it is seen that in the function simulink_model_Task at the be-
ginning the expression RTMSetErrStat is added. Subsequently, if the TLC vari-
able ExtMode has the value TRUE, the parsing of the arguments for the external
mode is performed. Afterwards the mode is initialized. If the external mode is ac-
tivated, then the initialization of the external mode is carried out. If the variable
CompiledMode.SupressErrorStatus has the value 0, a function is called,
which checks the model status. Subsequently, the configuration of the timer interrupt
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is executed.

During the implementation, timer 7 was chosen for the implementation of the model
step, this decision was made during the hardware peripheral configuration in sec-
tion 5.6.

Afterwards the idle while loop is inserted into the C file. After the while loop the
termination of the model and the shutdown of the external mode follows, if the external
mode is configured.

Listing 5.12 shows to the configuration of the interrupt that calls the model step.

1 vo id C o n f i g u r e _ T I M 7 _ s t e p _ i n t e r r u p t ( vo id ) {

2 LL_TIM_InitTypeDef t i m I n i t S t r u c t ;

3 / * Time base c o n f i g u r a t i o n * /

4 t i m I n i t S t r u c t . P r e s c a l e r = __LL_TIM_CALC_PSC (

SystemCoreClock , ( 1 / SIMULINK_MODEL_FIXED_STEP)

*10000) ;

5 t i m I n i t S t r u c t . CounterMode =

LL_TIM_COUNTERMODE_UP;

6 t i m I n i t S t r u c t . A u t o r e l o a d = __LL_TIM_CALC_ARR (

SystemCoreClock , t i m _ i n i t s t r u c t . P r e s c a l e r , ( 1 /

SIMULINK_MODEL_FIXED_STEP) ) ;

7 t i m I n i t S t r u c t . C l o c k D i v i s i o n =

LL_TIM_CLOCKDIVISION_DIV1 ;

8 / * I n i t i a l i z a t i o n o f t h e TIM7 p e r i p h e r a l * /

9 LL_TIM_Init ( TIM7 , &t i m _ i n i t s t r u c t ) ;

10 / * Enab le TIM7 i n t e r r u p t * /

11 LL_TIM_EnableIT_UPDATE ( TIM7 ) ;

12 / * S t a r t TIM7 c o u n t e r * /

13 LL_TIM_EnableCounter ( TIM7 ) ;

14 }

Listing 5.12: TLC implementation of the function/ISR TIM7_IRQHandle

In listing 5.12 it can be seen that the following timer settings are done by the use of the
LL_TIM_Init [55] function in line 9.
These settings are:

1. The calculated prescaler value from line 4, is set to the prescaler register, shown
in figure A.1.
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2. The counter mode, seen in line 5, is set to upcounting, by setting the DIR bit of
the TIM control register 1, shown in figure A.6.

3. The calculated auto-reload value, seen in line 6, is set to the Auto-Reload regis-
ter, shown in figure A.2.

4. The clock division is set to 1 in line 7, by setting the CKD bitfield of the TIM
control register, seen in figure A.6.

Then the UIE Bit form TIM DMA/Interrupt Enable Register is set in line 11 to enable
the timer interrupt. The register is seen in figure A.7. At least the timer is started in
line 13, by setting the CEN bit in TIM control register 1, shown in figure A.6.

The c functions used in listing 5.12 are taken from [55]. The macros to calculate the
values of the prescaler and the auto-reload in line 4 and 6 are taken from [56].

The macros calculate the prescaler according to equation (A.1), and the auto-reload
value according to equation (A.2).

Listing 5.13 shows the model step that is processed by the ISR of the timer interrupt.

1 %% C r e a t e s i m u l i n k _ m o d e l _ c a l l . c

2 . . .

3 / * Model S t ep I n t e r r u p t * /

4 vo id TIM7_IRQHandler ( vo id )

5 {

6 LL_TIM_ClearFlag_UPDATE ( TIM7 ) ;

7 i f ( runModel ) {

8 % i f ExtMode

9 %<FcnGenerateExtModeOneStep ( ) >

10 % e n d i f

11 %<srcBaseName > _ s t e p ( ) ;

12 s t o p R e q u e s t e d = ! ( %<ERTStopCheck ( ) >) ;

13 % i f HONORRUNTIMESTOPREQUEST | | ExtMode

14 runModel = ! ( s t o p R e q u e s t e d ) ;

15 % e n d i f

16 }

17 NVIC_ClearPendingIRQ ( TIM7_IRQn ) ;

18 }

Listing 5.13: TLC implementation of the function/ISR TIM7_IRQHandle
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The processing of the timer ISR, which calls the model step, runs as follows:

Line 6: The macro LL_TIM_ClearFlag_UPDATE [55] resets the UIF bit of the
timer status register, seen in figure A.8.

Line 7: Checks that variabl runModel is not equal to 0.

Line 8: TLC if the external mode is selected during code generation, the if condition
in line 8 will insert line 9 in the code.

Line 9: (Only if ExtMode=1) Inserts the functions for calling the external mode, if
ExtMode = 1. The MATLAB function FcnGenerateExtModeOneStep is
taken from [52].

Line 10: End of the if conndition from line 8.

Line 11: Call of the model step. Here the generated code of the Simulink model is
called.

Line 12: It is checked whether a stop request is present. The MATLAB function
ERTStopCheck is taken from [52].

Line 13: TLC if condition inserts code if there is a runtime limited or if the external
mode is enabled.

Line 14: The variable runModel is set to the value non stopRequest.
stopRequest is set by the external mode one-step function or by the model
step if the run-time limit is reached.

Line 15: End of the if conndition from line 13.

Line 17: Clears the pending flag of the NVIC. The macro
NVIC_ClearPendingIRQ is taken from [57].

To generate code, the system target file of the embedded coder ert.tlc is selected
in the Simulink “Hardware Settings” under “Code Generation”. The option “Generate
code only” is selected, too. This is seen in figure 5.3.
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Figure 5.3: Selecting the system target file for code generation

The developed “File customization template” codertarget_STM32MP1.tlc is
selected in the Simulink ‘Hardware Settings” under “Templates”. This is seen in fig-
ure 5.4.
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Figure 5.4: Selection of the developed coder target for the STM32MP1

After these settings have been made, the code can be generated.

5.2 Implementation of the External mode via XCP on

TCP/IP

The external mode turns the Simulink model into a bidirectional interface to the real-
time application generated from the Simulink model. The real-time application can be
started, stopped, signal paths can be observed and parameters can be adjusted by the
external mode. [58]

A schematic communication diagram of the external mode connection is shown in fig-
ure 5.5.
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Figure 5.5: External mode transport layer between the development computer and the
target hardware (cf. [59])

The external mode can be implemented through different transport layers such as XCP,
TCP/IP or serial. [59]

The implementation of the different transport layers is based on the implementation of
the rtiostream API. [42, 60]

The rtiostream API [61] is used to create a physically independent communication
channel for the exchange of data between processors. The rtiostream API is based
on four functions. The function rtIOStreamOpen is used to initialize the chan-
nel. The function rtIOStreamSend is used to send data over the interface and the
function rtIOStreamRecv is used to receive data from the channel. The fourth
function rtIOStreamClose deinitializes the communication channel opened by
the first function. [61]

The implementation of the XCP brings the advantage of a more lightweight communi-
cation software stack on the real-time hardware side compared to the basic implemen-
tation of the external mode. [59]

Figure 5.6 shows a schematic diagram of the external mode via XCP.
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Figure 5.6: Schematic diagram of the external mode via XCP transport layers (cf. [42])

It can be seen that the XCP master (server) is located on the side of the development
computer. This is different when using the external mode without XCP. In the exter-
nal mode implementation without XCP there is an external mode server on the target
hardware side. [62]

This external mode server on the target side can be transfomed to a XCP master running
on the hardware of the development computer by implementing the external mode via
XCP. [42, 62]

This is the reason, why the implementation of the external mode via XCP leads to a
smaller communication software stack than the implementation of the external mode
without XCP. [42, 59, 62]

In addition, the implementation of the external mode via XCP supports the monitoring
of signals in the Simulation Data Inspector, and in the Logic Analyzer. These features
are not supported by the basic external mode. [59]

Based on these reasons, it was determined during the requirements engineering process
that the external mode must be implemented via XCP ( Req_02 A.1.1).

The implementation of the external model via XCP is done in four steps: [42]

1. Adding the external mode functions to the Simulink target.
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2. Adding the XCP slave protocol layer to the build process.

3. Adding the XCP slave transport layer to the build process

4. Creating an XCP platform abstraction layer

These four steps are explained next:

1. The adding of the external mode functions is already considered in section 5.1
during the development of the coder target. The external mode functions are included
at the positions that are wrapped by the if condition:

1 % i f ExtMode

2 e x t e r n a l M o d e F u n c t i o n s ( ) ;

3 %end

Listing 5.14: If ExtMode conndition, for the implementation of the external mode
commands

2. Adding the XCP slave protocol layer according to ASAM MCD-1 XCP [28]
standard to the build process. [42]
The source files are located at:

matlabroot/toolbox/coder/xcp/src/target/slave/protocol/src

These sources are added to the CMake project.

3. Adding the XCP slave transport layer according to ASAM MCD-1 XCP [28]
standard to the build process. [42]
The source files are located at:

matlabroot/toolbox/coder/xcp/src/target/slave/

transport/src

These sources are added to the CMake project.

4. The XCP platform abstraction layer consists of the XCP driver, which implements
the physical communication channel and the implementation of static memory allo-
cation as well as the implementation of other target hardware-specific functionalities,
such as a delay implementation. [42]

For the implementation of the XCP driver, a XCP custom abstraction layer [63] and a
rtiostream communication channel based on the rtiostream API [64] are created.
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The XCP custom abstraction layer defines platform-specific functionalities, like mu-
tual exclusion, a sleep function, data logging, address conversion, set memory, and
copy memory. [42]

The developed XCP custom abstraction layer can be found at item A.1.2:
Smart_RCP/02_Software/target/arch/STM32MP1_Source/

Xcp/xcp_inc/xcp_platform_custom.h

Since in section 4.1 it is planned to transfer the external mode XCP messages between
the Cortex-M4 and the development computer through the Cortex-A7, a rtiostream
layer is developed to provide a physical connection between the Cortex-M4 and the
Cortex-A7.

The developed rtiostream communications channel can be found at item A.1.2:
Smart_RCP/02_Software/target/arch/STM32MP1_Source/

Smart_STM32MP1_rtiostream

The rtiostream communications channel is implemented using the IPCC and the Open
Asymmetric Multi Processing (OpenAMP) Framework on the Cortex-M4 side of the
Inter-Processor Communication (IPC).

Figure 5.7 shows an overview of the IPC.
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Figure 5.7: IPC structure (cf. [65])

The implementation of the IPC is based on the Remote Processor Messaging (RPMsg)
and Mailbox mechanisms. [66]

As show on the Cortex-M4 side in figure 5.7, the IPCC and the OpenAMP framework
is needed for the implementation. The required configuration for these components
can be seen in figure A.20 and figure A.21.

There are two different ways to implement buffer exchange between the Cortex-A7 and
the Cortex-M4. The first way is the “Direct buffer exchange mode”. In this mode, only
effective user data is transferred by RPMsg buffer during data transfer. The memory
allocation is hard defined in the code (default = 512 B). This mode can be implemented
with small effort. The mode transmits data with a maximum speed of 5 MBs−1. Each
transmitted message triggers an interrupt at the receiving processor by the IPCC. For
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example, a 512 B RPMsg transmitted at 1 MBs−1 would trigger about 2000 IRQs per
second. The second way is the “Indirect buffer exchange mode”. This mode uses
RPMsgs to pass references to the effective data buffers. These data buffers can be
of any size. The data access can be done on cached or none cached memory, Dou-
ble Data Rate (DDR) or MicroController Unit (MCU) SRAM, DMA, or any master
peripheral. This method requires an increased implementation effort compared to the
first mode. [67]

For the implementation of the rtiostream communication channel the “Direct buffer
exchange mode” is used. The Cortex-M4 sided implementation is similar to the Code
example OpenAMP_TTY_echo [68].

If a Cortex-M4 interrupt is triggered by the IPCC, the received message is stored in a
ring buffer using the VIRT_UART0_RxCpltCallback [69] during the ISR. This
ring buffer is read out within the rtiostreamRecv function. The message is sent
using the function VIRT_UART_Transmit [69] within the rtiostreamSend

function.

On the Cortex-A7 side the IPC is implemented by the Linux remoteproc frame-
work [70] and the mailboxservice stm32_ipcc [71]. [66]

For the Cortex-A7, an application is implemented that forwards the external mode XCP
messages as shown in figure 5.8.

Within the Linux application the file discriptor /dev/ttyRPMSG0 is opened by the
system call open [72].

Opening the file descriptor enables the exchange of RPMsgs through the ioctl [73]
system call.

This process is implemented by the functions copro_openTtyRpmsg,
copro_readTtyRpmsg, and copro_writeTtyRpmsg of the copro.c [74]
file. The function rtIOStreamOpen of the file rtiostream_tcpip.c [75] im-
plements the TCP/IP server on the Cortex-A7. Two pthreads [76] are created to check
if messages are received by the TCP/IP server or by the RPMsg framework. If thread 1
detects a new message on the TCP/IP server, it transfers it to the Cortex-M4 using the
file discriptor and the RPMsg framework. When the thread 2 detects a message in the
file discriptor, this message is sent to the development computer via the TCP/IP server.

71



5 Software implementation

Figure 5.8 shows a schematic diagram of the application that passes the XCP messages.
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Figure 5.8: Linux application for bidirectional forwarding of XCP messages

This application, named “External_Mode”, is attached in the appendix un-
der item A.1.2.

To use the external mode via XCP on TCP/IP, the “External mode” has to be selected
in the Simulink “Hardware Settings” under “Interface”. The “Transport layer” has to
be set to “XCP on TCP/IP”.

The “MEX-file arguments” consists of the IP address of the target, the port number
and the path of the firmware. [77]
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Figure 5.9: Setting the external mode via XCP on TCP/IP

Then first the generated firmware, and then the Linux application “External_mode”
must be started on the STM32MP1.

Afterwards the external mode can be connected as described in [31].

5.3 Implementation of a MATLAB independent build

process

As described in Req_03 A.1.1, a build process independent of MATLAB and indepen-
dent of STM32CubeIDE [78] must be set up.

The build process implemented in [7] is based on a “Template Makefile”. A Makefile
is generated from this during code generation. The Template Makefile is hardcoded. It
knows only the C files, which are present at the point in time, when the Template Make-
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file is created. The manual adjustment of the Template Makefile is time-consuming and
inefficient.

The build process of STM32CubeIDE on the other hand is based on Eclipse C/C++
Development Toolkit (CDT). The CDT containing a C managed build, which gener-
ates a Makefile project. When using the STM32CubeIDE to generate a Makefile, the
generated Makefile includes all files of the STM32CubeIDE Makefile project. [79]

This has the advantage that the Makefile does not have to be manually adjusted. The
disadvantage is that the additional development tool ST32CubeIDE is necessary.

The implementation of CMake brings the advantage that a CMakeLists.txt is a
blueprint for the generation of Makefiles, to compile the C project. This allows
defining in which subdirectories code for creating objects, libraries, or applications
are located. Thereby it is possible to build any source file after code generation
from STM32CubeMX, which is located in the subdirectories described in the CMake-
Lists.txt. Another advantage is that it is possible to call the CMakeLists.txt from any
directory path. [80]

This makes it possible to call the CMakeLists.txt file from the MATLAB project folder
and to build the firmware inside the project folder, without having to copy the whole
makefile project into the MATLAB project folder. The objects that are already com-
piled in the CMakeLists folder do not have to be recompiled when The CMakeLists.txt
is called from a different path. In this CMakeList.txt project, the structure is divided
into subdirectories. The build process of these subdirectories is described by their
CMakeLists.txt files, which are included in the parent CMakeLists.txt file. This is
mapped in figure 5.10.
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STM32MP1_Source

CMakeLists.txt

CM4

CMakeLists.txt

...

CMakeLists.txt

Common

CMakeLists.txt

...

Dirvers

CMakeLists.txt

...

...

Figure 5.10: Structure of a STM32CubeMX prjectes

The build and deployment of the firmware on the STM32MP1, after the code
generation by MATLAB Simulink, is done by the build_and_deploy.bash

script A.1.2, that builds the firmware using the CMkaeLists.text and flashes the
firmware to the SRAM memory of the Cortex-M4 by ssh and the help of the embedded
Linux system.

5.4 Implementation of asynchronous Interrupts

The implementation of ISRs triggered by IRQs requires the configuration of the ac-
cording interrupt, the configuration of the peripheral where the interrupt occurs and
the programming of the according ISR. [81]

Since the generation of the C code for the Cortex-M4 has to be done by MAT-
LAB/Simulink, all this has to be done by placing code in blocks.

An example code initialisation of an IRQ and an ISR for an DMA stream can be seen
in listing 5.15 and listing 5.16.
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1 main ( ) {

2 . . .

3 / * C o n f i g u r e NVIC * /

4 N V I C _ S e t P r i o r i t y ( DMA2_Stream2_IRQn , 0 , 1 , 0 ) ) ;

5 NVIC_EnableIRQ ( DMA2_Stream2_IRQn ) ;

6 / * C o n f i g u r e DMA p e r i p h e r a l * /

7 . . .

8 LL_DMA_EnableIT_TC (DMA2, LL_DMA_STREAM_2) ;

9 . . .

10 w h i l e ( 1 ) {

11 }

12 }

Listing 5.15: Code example for the configuration of an interrupt

In listing 5.15 it can be seen that at the beginning the interrupt priority is set. Then the
corresponding interrupt is enabled in the NVIC. Then the corresponding peripheral is
configured and the interrupt is activated. From the activation of the interrupt enable
flag in the register of the peripheral the interrupt is active and can lead to an ISR by the
presence of an IRQ.

1 / * I n t e r r u p t S e r v i c e R o u t i n e o f DMA2_Stream2 * /

2 vo id DMA2_Stream2_IRQHandler ( vo id ) {

3 / * s t a r t DMA T r a n s f e r * /

4 . . .

5 i f ( LL_DMA_IsActiveFlag_TC2 (DMA2) ) {

6 LL_DMA_ClearFlag_TC2 (DMA2) ;

7 . . .

8 }

9 NVIC_ClearPendingIRQ ( DMA2_Stream2_IRQn ) ;

10 . . .

11 }

Listing 5.16: Code example for the implementation of an ISR

Listing 5.16 shows the ISR, which is called by the IRQ. It is important that the corre-
sponding register bits (peripheral and NVIC) that led to the call of the ISR are reset in
the ISR. If these bits are not reset, then this can lead to a non-terminating call of the
ISR.
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MATLAB/Simulink supports the implementation of interrupt blocks. If the code gen-
eration is done by embedded coder, it is possible to include interrupts of the NVIC.
If the board that is used is not supported by a board support package, a board speci-
fied interrupt block can be created by modifying the interrupt block contained in the
“Support Package for ARM Cortex-M Processors”. [82]

How to create an interrupts block for an ARM Cortex-M target is explained in the
following:

Installation of the embedded coder Support Package for ARM Cortex-M proces-
sors. [82] The “Embedded Coder Support Package for ARM Cortex-M Processors”
can be downloaded from the MathWorks file exchange.[83]

Creating an xml interrupt description file based on the numbers and the names of the
interrupts of the interrupt vector table of the silicon vendor. An example xml interrupt
description file can be viewed after installing “Embedded Coder Support Package for
ARM Cortex-M Processors” by the commands shown in listing 5.17. [82]

1 cd ( f u l l f i l e ( c o d e r t a r g e t . arm_cor tex_m . i n t e r n a l . ge tSpPkgRootDir ,

’registry’ , ’interrupts’ ) ) ;

2 e d i t (’arm_cortex_m_interrupts.xml’ ) ;

Listing 5.17: Open the example xml interrupt description file by entering the
commands shown in the MATLAB console

Within the xml interrupt description file the interrupts can be divided into groups. The
IrqName, as well as the IrqNumber must match the name of the interrupt and the
position in the interrupt vector table of the board. These two parameters are used
for code generation. The parameter NumberOfPriorityBits must be adapted to the
specification of the silicon vendor. It is possible to disable the “Disable interrupt pre-
emption” checkbox by the ShowPreemptionOption, this should be done if the board
does not support interrupt pre-emption. [82]

Figure 5.11 shows the relationship between the xml interrupt description file and the
interrupt block mask.
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<?xml version="1.0" encoding="utf-8"?>

<!-- Copyright 2014-2015 The MathWorks, Inc. -->

<InterruptInfo>

<!-- ARM Cortex-M processor NVIC peripheral -->

<DeviceName>ARM Cortex-M4 STM32MP1</DeviceName>

<NumberOfPriorityBits>4</NumberOfPriorityBits>

<ShowPreemptOption>1</ShowPreemptOption>

<!-- Cortex-Mx core exceptions -->

<IrqGroup>

<Name>Cortex-M DMA</Name>

<IrqInfo>

<IrqName>DMA1_Stream0_IRQHandler</IrqName>

<IrqNumber>11</IrqNumber>

</IrqInfo>

...

<IrqInfo>

<IrqName>DMA2_Stream2_IRQHandler</IrqName>

<IrqNumber>58</IrqNumber>

</IrqInfo>

text

Figure 5.11: The xml interrupt description file displayed next to the interrupt block
mask

Figure 5.11 shows a part of the xml interrupt description file on the left side, on the
right side the interrupt block can be seen on top, below this the interrupt block mask
is shown. The blue arrows symbolize the relationship between the xml interrupt de-
scription file and the block mask, as well as the block. The NumberOfPriorityBits is
set to 4 for the Cortex-M processor of the STM32MP157. This can be read from the
vendor specification in [24, p. 1266]. In the xml interrupt description file you can see
that “ARM Cortex-M4 STM32MP1” was specified as DeviceName. This name is
taken over together with the selected interrupt name in the block diagram. In the in-
terrupt block mask the interrupt group “Cortex-M DMA” is currently selected, within
this group the interrupt “DMA2_Stream2_IRQHandler” was selected under Interrupt
name. In the interrupt block mask it can be seen that the interrupt number is grayed out.
The interrupt number and the interrupt name were defined in the xml interrupt descrip-
tion file. For the interrupt “DMA2_Stream2_IRQHandler” the position was specified
from the interrupt vector table. The interrupt position and the interrupt name can be
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found for the Cortex-M4 of the STM32MP157 board in [24, p. 1252]. In the xml in-
terrupt description file you can see that the IrqName “DMA2_Stream2_IRQHandler”
was assigned the IrqNumber 58, which corresponds to the interrupt position in the
interrupt vector table.

After the xml interrupt description file has been created, it must be registered in the
interrupt block. To do this, the Arm Cortex-M interrupt block is copied to a library
model and then registered using the command below in listing 5.18. [82]

The xml interrupt description file is registered in the interrupt block by the command
shown in listing 5.18.

1 s e t _ p a r a m ( ha rdware i n t e r r u p t b lock , In t e r rup t sXMLPa th ,

i n t e r r u p t d e s c r i t p i o n f i l e )

Listing 5.18: Registration of the xml interrupt descrtiption file into the interrupt block

The library model containing the hardware interrupt block is then saved. From the
library model the hardware interrupt block can be copied into the application mod-
els. [82]

Deployment of an interrupt block in a Simulink model

When using interrupt blocks within Simulink models, two more block types are inter-
esting.

Function-Call Subsystems

A function-call subsystems is a subsystem that is executed when a function-call
event is pending at the control port. An aperiodically triggered function-call
subsystems can be called zero times, multiple times or once during a model
step. In order for the blocks within the function-call subsystems to be called
aperiodically, the sample time of these blocks must be set to -1.[31]

An example function-call subsystem, named “DMA2_Stream2_IRQHandler In-
terrupt Service Routine” is shown in figure 5.12.

Rate Transition blocks

The Rate Transition block is designed to connect periodic and asynchronous
signal paths. If the Rate Transition block is inserted between two blocks with
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different sampling rates, the block automatically configures its input and output
for the transition.[31]

An example rate transition block named “Rate_Transition” is shown in fig-
ure 5.12.

The modified interrupt block can be used in the Simulink model as shown in fig-
ure 5.12.

Figure 5.12: Deployment of an interrupt block in a Simulink model

The model shown in figure 5.12 shows the interrupt-based call to read the DMA buffer
and process its data. The DMA buffer is read asynchronously within the function-call
subsystem as soon as the DMA2 Stream2 IRQ is triggered. The read-in data is passed
on to the “MPU6500 data processing subsystem” via the rate transition block. This
subsystem is executed periodically.

If IRQs and ISRs are implemented by MATLAB/Simulink as described, configuration
codes are generated for programming the NVIC, programming the ISR (interrupt han-
dler). For a complete functionality of an interrupt the configuration of the respective
peripherals and the resetting of the interrupt flags of the peripherals is still missing.
These steps are done by custom Simulink blocks. These are described individually in
section 5.5.

If the ISR (interrupt handler) are generated by the embedded coder of MAT-
LAB/Simulink, a problem occurs during linking because two interrupt handlers with
the same name are now available in the project.
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To instruct the linker which of the existing ISRs has to be linked into the project, the
function that has to be excluded has to be marked with __weak.

The keyword __weak tells the compiler to export a symbol as weak. It can be applied
to variable, as well as function declarations and function definitions. If __weak is
applied to a function definition, it behaves like a normally defined function, unless this
function is present in the image with the same name in non-weak. In that case only the
non-weak function is linked. [84]

To fix these linker errors all interrupt handlers generated by STM32CubeMX are
marked with __weak. Thus the interrupt handlers generated by the embedded coder
have precedence when linking. All interrupt handlers marked with __weak but not
appearing in the MATLAB/Simulink generated code are treated as normal declared
functions. To avoid having to declare all interrupt handlers manually with __weak

after each pin muxing change in STM32CubeMX, a patch is created that is able to do
that.

In listing 5.19 it can be seen how this patch is applied.

1 cd STM32CubeMXProjectDirectory

2 p a t c h . / CM4/ Src / s tm32mp1xx_i t . c . / p a t c h / i rq_weak . p a t c h

Listing 5.19: Patching the interrupt handlers of the STM32CubeMX project to __weak

5.5 Implementation of hardware-related Simulink

blocks

There are different ways to create custom Simulink blocks. [85] Not all methods
are equally suitable for generating hardware specific C code. Level-2 MATLAB S-
Functions are particularly suitable for generating hardware-related blocks, since they
support the implementation of TLC files. The implementation of TLC files allows
inlining. Level-2 MATLAB S-functions achieve lower execution speeds compared to
C S-functions, since their code must be executed via the MATLAB engine and is not
available in compiled form as for the C S-function. [86]

MATLAB S-Functions and Level-2 MATLAB S-Functions differ in their API. The
API of the Level-2 MATLAB S-Functions is more extensive, and it is recommended
to develop Level-2 MATLAB S-Functions blocks for newer developments. [87]
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In this thesis, the developed hardware blocks do not perform any simulation, so it does
not matter that by choosing the implementation by Level-2 MATLAB S-Functions,
the method with the lower simulation time is chosen. The blocks are included in the
Simulink model through a .m files. This file tells how many inputs and outputs a
block has, and which configuration parameters are passed to the TLC during the code
generation.

The block target file methods implemented in the .tlc file are also created within
the .m file. These methods determine which TLC code blocks are inlined during code
generation. There are, for example, block target file methods which are inserted at the
start of the model, or which are iserted at each model step, as well as methods which
serve the setup or the termination of the block. [88]

The two objects, block and system, are passed to the block target file methods. In
the object block configuration parameters of the block are stored, some of them are
generated by the .m files. The object system contains to the Simulink sub or root
system information. [88]

The following block target file methods are summarized below:

BlockInstanceSetup The method BlockInstanceSetup(block, system)

is a setup method that insertes TLC code for each block implemented in the
Simulink model. [88]

BlockTypeSetup The method BlockTypeSetup(block, system) is a setup
method that insertes TLC code for each block type implemented in the Simulink
model. The application can occur, for example, when a lookup table is used
multiple times, but only needs to be initialized once. [88]

Enable The TLC code of the Enable(block, system) method is then inserted
if the block is in a Simulink subsystem that contains an enable function. [88]

Disable The TLC code of the Disable(block, system) method is then in-
serted if the block is in a Simulink subsystem that contains an disable func-
tion. [88]

Start The method Start(block, system) is used to insert TLC code into the
start function. The start function is executed only at the beginning of the
model. [88]

InitializeConditions The InitializeConditions(block, system)

method inserts TLC code in two places. It inserts into subsystems that are con-
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figured to reset back to their initial state when activated. And the method in-
serts TLC code into the start function when the blocks are inside the Simulink
root system. The difference between the InitializeConditions and Start meth-
ods is that the block that performs its initialization with the InitializeConditions
method is reinserted within a subsystem when reactivated. [88]

Outputs The method Outputs(block, system) inserts TLC code in two
places. If the corresponding block is in the Simulink root, then the TLC code
is inserted into the output function of the Simulink model. If the block is in a
Simulink subsystem, the TLC code of the block is inserted into the output func-
tion of this subsystem. The output functions of the Simulink model can then be
called, for example, at each model step. [88]

Update The method Update(Block, System) inserts TLC code into the update
function of the model. It can be used for example to change an array index. [88]

Derivatives The Derivatives(block, system) method is used for inserting
TLC code into the derivatives function of the model. This method allows the
calculation of continuous block states. [88]

Terminate The Terminate(block, system) method is used to insert TLC
code into the termination function of the model. The method can be used for
example to reset initialized hardware or to free allocated memory. [88]

After an .m file and an .tlc file are created, a mask is created for the block. The
main purpose of this mask is to allow entering the block parameters.

For example, the mask of an example block may look like in figure 5.13.

Figure 5.13: Block mask of the EXTI IRQ handler block

The mask creation is performed by the Mask editor. As seen in figure 5.14.
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Figure 5.14: Mask editor, creating the block mask of the EXTI IRQ handler block

Next, the implementation of the developed Simulink blocks is described.

TIM_PWM_Config block

For the TIM_PWM_Config block, the block target file methods Start and Initialize-
Conditions are implemented. The TLC code of the method Start is inserted inside the
model before the TLC code of the method InitializeConditions. By using hardware
configuration TLC code within the Start method, and the start commands within the
InitializeConditions method, multiple timer channels of the same timer can be started.

Following example describes how to set register bits for a timer PWM configuration for
timer 1 and channel 1. For the configuration of a PWM the following bits in following
registers must be programmed: [89]

1. Set the prescaler value in the prescaler register, shown in figure A.1.
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2. Set the Auto-Reload value in the Auto-Reload register mapped in figure A.2.

3. Resetting the CC1S bit in Capture/Compare mode register, shown in fig-
ure A.3.If the bit is not set, the channel is configured as output.

4. Set PWM mode through data field OC1M in Timer Capture/Compare mode reg-
ister, shown in figure A.3.

5. Set the duty cycle through the Capture/Compare register, shown in figure A.4.

6. Enable the timer channels by setting the CC1E bit in the register Capture/Com-
pare Enable register, shown in figure A.5.

7. Starting the timer by setting the CEN bit in Timer control register 1, shown in
figure A.6.

With the equation (A.1) and equation (A.2) the PWM frequency fPeriod is set. The
frequencies descriptions are listed here:

fCKPSC = Prescaler input clock frequency

fCKCNT = Counter input clock frequency

fPeriod = PWM frequency

The created TIM_PWM_Config block and the corresponding block mask are shown in
figure 5.15.

Figure 5.15: TIM_PWM_Config block and its block mask

If the block is used for synchronization of a PWM output, the user must enter the TIM
peripheral, the channel, the timer tick frequency, the frequency and the initialization
value of the duty cycle.

The setting of the frequency is not done fully automatically, because some timers have
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a 16 bit and others a 32 bit counter register. This must be noted by the user before
using the block so that the timer tick frequency (counter input clock frequency) can
be set correctly. The value for the Prescaler register, the value for the Auto-Relode
register and the value for the Capture/Compare register is determined within the TLC
code.

TIM_Set_DC block

To set the duty cycle of a configured PWM it is only required to adjust the value of
the Capture/Compare register. Shown in figure A.4. This is done by TLC code that is
inserted by the block target file method Outputs.

The created TIM_Set_DC block and the corresponding block mask are shown in fig-
ure 5.16.

Figure 5.16: TIM_Set_DC block and its block mask

As seen in figure A.4, the user has to select the timer and the channel within the block
mask.

The Simulink input type of the block is defined as double. The expected input values
are between 0 and 100. Within the TLC code, a value is formed which is calculated
from the Auto-Reload registers value and the Simulink input value. This value is writ-
ten to the capture/compare register.

CCregister = (uint32T )
(ARR+1)∗ Input

100
(5.1)
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At this point, it must be paid attention to the fact that the calculated value may not have
a higher value than 65535 for 16 bit timers.

TIM_CC_Interrupt_Config_Flag_Reset block

The TIM_CC_Interrupt_Config_Flag_Reset block is implemented by the block target
file method InitializeConditions and Outputs. For example, if a Capture/Compare in-
terrupt is to be configured for channel 2 of timer 1, the bits are set as follows. Inside
the InitializeConditions method, TLC code is inserted to set the CC2E bit in the Cap-
ture/Compare Enable register, to enable the channel, shown in figure A.5. And the bit
CC2IE bit is set in the TIM1 DMA/Interrupt Enable register, shown in figure A.7.

The moment when the interrupt is triggered is determined by the third input field shown
in figure 5.17. The value that is written into the timer Capture/Compare Register is
calculated as described in equation (5.1).

To ensure that the interrupt can be triggered by the ARM-Cortex-M interrupt block,
the Capture/Compare interrupt for the NVIC must be enabled in the STM32CubeMX
configuration. The STM32CubeMX setting can be found under the selected timer
peripheral, under NVIC, as shown in figure 5.17.

Figure 5.17: STM32CubeMX configuration to enable the interrupt call by the ARM-
Cortex-M interrupt block

Within the block target file method Outputs, the TLC code checks whether the CCxIF
bit of the TIMx status register is set. In this case, it is cleared. If the CCxIF bit is set
when entering the TLC code of the Outputs method, a 1 is returned at the Simulink
block output. If the bit was not set, a 0 is returned. The Simulink block output is
configured as an uint8_t datatype. Returning whether the bit has been set enables
the detection of multiple Capture/Compare channels within a timer Capture/Compare
ISR.
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The created TIM_CC_Interrupt_Config_Flag_Reset block and the corresponding
block mask are shown in figure 5.18.

Figure 5.18: TIM_CC_Interrupt_Config_Flag_Reset block and its block mask

The user must select the desired timer and the timer channel within the block mask.
This can be seen in figure 5.18.

TIM_Get_Counter

The block TIM_Get_Counter is very similar to the block
TIM_CC_Interrupt_Config_Flag_Reset. Within the TLC code of the block target file
method Outputs, the value of the timer counter register, seen in figure A.6, is returned
to the block output. Then, in TLC code of the Outputs method, the value of the timer
counter register is set to 0. The block output is assigned the datatype uint32_t, so
that the block can be used for timers with 16 bit or 32 bit counter register.

The created TIM_Get_Counter block and the corresponding block mask are shown in
figure 5.19.
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Figure 5.19: TIM_Get_Counter block and its block mask

This block is designed to be used in input Capture/Compare applications. The task of
the block is to read the timer counter register and reset the interrupt flag of the timer.

The user sets the timer peripheral and the configured timer channel as shown in fig-
ure 5.19 and positions this block in the Function-Caller subsystem that is called by the
ARM Cortex-M interrupt block, which is configured as the corresponding Capture/-
Compare interrupt.This structure is shown in figure 5.20.

Figure 5.20: Location of operation of the TIM_Get_Counter block

The subsystem framed in red contains the TIM_Get_Counter block.

TIM_CC_Start_IR (only for the use of the external mode)
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SPI_DMA_Transmit

The SPI_DMA_Transmit block is implemented by the block target file methods Block-
TypeSetup, Start, Outputs, and Terminate.

Using the method BlockTypeSetup creates an spi_dma_transmit.h and an
spi_dma_transmit.c file. The spi_dma_transmit.c file includes two func-
tions. One is to initialize the chip select pin, which is selected by the block mask and
the second function initializes the selected SPI DMA transmit peripheral. The follow-
ing steps are performed within the initialization function:

1. Setting the bits: DIR, CIRC, PINC, MINC, PSIZE, MSIZE, PL, and PFCTRL
in the DMA stream x configuration register, as seen in figure A.9.

2. Setting the base address of the memory through the DMA stream x memory 0
address register, as seen in figure A.10.

3. Setting the base address of the peripheral data register through the DMA stream
x peripheral address register, as seen in figure A.11.

4. Setting the number of data items to transfer using the DMA stream x number of
data register, as seen in figure A.12.

5. Selecting the input DMA request through the DMAMUX request line multi-
plexer channel x configuration register, as seen in figure A.13.

6. Enabling the DMA transmit stream through the SPI configuration register 1, as
seen in figure A.16.

7. Setting the bits: TCIE, and TEIE in the DMA stream x configuration register, as
seen in figure A.9.

8. Enabling the alternate function GPIOs controle through the SPI configuration
register 2, as seen in figure A.17.

9. Enabling the serial peripheral through the SPI/I2S control register 1, as seen in
figure A.18.

The block target file method Start initializes the SPI peripherals and the chip select
pin, by calling the functions generated by the BlockTypeSetup method. Within the
TLC code of the block target file method Outputs, the data of the input of the Simulink
block (uint8_t vector) is copied to the configured base memory address. Afterward
the CSTART bit of the SPI/I2S control register 1, seen in figure A.18, is enabled to
start the DMA master transfer. The block target file method Terminate deinitializes the
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configured DMA and SPI peripheral.

The SPI_DMA_Transmit block and its block mask is seen in figure 5.21.

Figure 5.21: SPI_DMA_Transmit block and its block mask

In the block mask is defined which SPI peripheral, which DMA controller, which DMA
stream is used for sending and which for receiving, as well as the maximum number
of bytes that are transmitted. Additionally, a chip select pin can be selected.

SPI_DMA_Receive

When explaining the SPI_DMA_Receive block it is useful to refer to the
SPI_DMA_Transmit block.

The differences are that during the BlockTypeSetup block target file method the two
created files are called spi_dma_receive.h and spi_dma_receive.c. Their
content is similar to the files of the SPI_DMA_Transmit.

One difference is for example that during initialization the the RXDMAEN instead of
the TXDMAEN bit of the SPI configuration register 1 A.17 is set.

The block target file method Outputs copies the data received by the SPI peripheral
using the DMA controller to the (uint8_t vector) output of the Simulink block.

The SPI_DMA_Transmit block and its block mask is seen in figure 5.22.
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Figure 5.22: SPI_DMA_Receive block and its block mask

In the block mask is defined which SPI peripheral, which DMA controller, which DMA
stream is used for receiving, as well as the maximum number of bytes that are received.
Additionally, a chip select pin can be selected.

DMA_flag_handler

The block DMA_flag_handler is implemented to reset the TCIF bit in the DMA low
interrupt status register, as seen in figure A.14. This is needed for the DMA interrupt
implementation.

The block implementation uses only the Outputs block target file method. In the TLC
code of the Outputs method, the interrupt flags transfer complete and transfer error are
reset by the CTCIF and the CTEIF bits, as seen in figure A.15.

The Simulink block has two one-dimensional outputs of type uint8_t. The first
output returns 1 if the transfer complete is set, the second output returns 1 if the transfer
error is set. If the flags are not set, the outputs return 0.

The DMA_flag_handler block and its block mask is seen in figure 5.23.

92



5 Software implementation

Figure 5.23: DMA_flag_handler block and its block mask

In the DMA_flag_handler block, the DMA controller and the DMA stream are speci-
fied.

The use of the DMA_flag_handler block is especially useful within a Function-Caller
subsystem that is triggered by the corresponding DMA stream interrupt. The inside of
such a Function-Caller is shown in figure 5.24.

Figure 5.24: DMA_flag_handler block used inside of a Function-Caller
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The second output returns if the transfer error flag is detected. The output is routed
to the Error_Handler block. This is done to stop the firmware if a transfer error is
detected.

Error_Handler

The Error_Handler block implementation uses only the Outputs block target file
method. If the input of the Simulink block is not equal to 0, the function calls the
C-project error function. The block does not have a mask, because there are no param-
eters that have to be set. The Error_Handler block can be seen in figure 5.24.

EXTI_flag_handler

The EXTI_flag_handler block implements the block target file methods Start and Out-
puts. The code generated by the Start method configures the input pin, selected by
the mask, as a GPIO input, using no pull-resistor. Afterward, it configures the cor-
responding EXTI interrupt to the selected GPIO pin. In the Outputs method, the
corresponding interrupt flag is reset. The EXTI_flag_handler block, similarly to the
DMA_flag_handler block, is placed in the Function-Caller subsystem triggered by the
EXTI interrupt.

The EXTI_flag_handler block and its block mask is seen in figure 5.25.

Figure 5.25: EXTI_flag_handler block and its block mask
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In the block mask the GPIO port, the GPIO pin, and the EXTI line number is defined.

GPIO_Get_Input

The GPIO_Get_Input block implements the block target file methods Start and Out-
puts. In the method Start, the configuration of the GPIO pin is done.

The Start method reads the value of the IDR bit of the GPIO port input data register,
seen in figure A.19. This bit has the value of the corresponding pin. The value is
returned by the Simulink output.

The GPIO_Get_Input block and its block mask is seen in figure A.19.

Figure 5.26: GPIO_Get_Input block and its block mask

Within the block mask the configuration of the GPIO pin can be done.

ADC_DMA_Data_request

The ADC_DMA_Data_request block is used to start the ADC DMA transfer. The
block implementation is based on the example ADC DMA implementation [90].
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The block is implemented by the block target file methods BlockTypeSetup, Ini-
tializeConditions, Outputs, and Terminate. A adc_dma_request.h and a
adc_dma_request.c are created in the BlockTypeSetup method. The header in-
cludes headers required for the ADC implementation, such as the adc.h header, that
is generated by the STM32CubeMX project.. A global array is also defined, the length
of the array can be set by the input mask of the block. In the adc_dma_request.c
file the callback functions of the ADC DMA IRQ handler are implemented. During the
InitializeConditions method, an ADC calibration is performed as in [90]. The Outputs
method implements the ADC DMA one shot, also performed as in [90]. The Terminate
method deinitializes the ADC peripheral.

Figure 5.27 shows the ADC_DMA_Data_request block and the corresponding block
mask.

Figure 5.27: ADC_DMA_Data_request block and its block mask

Within the block mask the ADC peripheral and the data size of the DMA transfer are
specified.

ADC_DMA_ISR

The ADC_DMA_ISR block is used to read the recorded DMA values of the ADC pe-
ripheral inside the Function-Caller subsystem, which is triggered by the DMA, which
is configured to the ADC. The block is implemented using the Outputs method. In it,
the ADC DMA interrupt handler is called, as in the example ADC DMA implementa-
tion [90]. If the DMA transfer is completed, the recorded ADC values are copied from
the DMA memory to the Simulink output.
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Figure 5.28 shows the ADC_DMA_ISR block and the corresponding block mask.

Figure 5.28: ADC_DMA_ISR block and its block mask

Within the block mask the ADC peripheral and the data size of the DMA transfer are
specified.

MPU6500_DATA_REQUEST

The MPU6500_DATA_REQUEST block optimizes the time performance of the sen-
sor data requeset of the MPU6500. The block is a lightweight version of the
SPI_DMA_Transmit block 5.21. For the MPU6500_DATA_REQUEST block only
the target file method Outputs is implemented. In this method, a constant uint8_t
array of 15 B is transmitted via SPI unsing the DMA. The implementation of the Out-
puts method is like the Outputs method of the SPI_DMA_Transmit block. Except that
the data that are sent via DMA do not have to be copied from the Simulink block in-
put into the configured DMA memory area. The data to transmit for the sensor data
request are already in the configured DMA memory at each call. That reduces C1 of τ1

by 42 µs.

Figure 5.29 shows the MPU6500_DATA_REQUEST block and the corresponding
block mask.
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Figure 5.29: MPU6500_DATA_REQUEST block and its block mask

The block is configured like the SPI_DMA_Transmit block 5.21.

5.6 Mapping of the peripheral devices

The basic peripheral configuration of the STM32MP1 is done by the configuration tool
STM32CubeMX.

STM32CubeMX is a microcontroller and microprocessor configuration tool, that uses
a graphical user interface. After the graphical configuration the corresponding ini-
tialization codes for the Cortex-M processor are generated. The graphical interface
allows the configuration of peripherals like GPIOs or Universal Synchronous/Asyn-
chronous Receiver Transmitter (USART) interfaces, the system clock, memory con-
figuration and middleware stacks like Universal Serial Bus (USB) or TCP/IP. Addi-
tionally STM32CubeMX generates a partial Linux devicetree for the Cortex-A during
generation. [91]

Required peripherals are derived from the requirements of the Simulink target and
requirements of the example application.

The Simulink target requires a timer. This triggers an interrupt after a configured time,
which calls the model. To select this timer, the existing timers of the STM32MP1 are
inspected first.

The STM32MP1 MPU has 14 timer units, if the low power timer and the realtime
timer are not considered. These timers are divided into three categories, seen in ta-
ble 5.1. [24]
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Advanced-control timers General-purpose timers Basic timers

TIM1, TIM8
TIM2, TIM3, TIM4, TIM5,

TIM12, TIM13, TIM14,
TIM15, TIM16, TIM17

TIM6, TIM7

Table 5.1: Timers available on the STM32MP1 MPU

Advanced-control timers are equipped with a 16 bit counter and a 16 bit pro-
grammable prescaler. The maximal number of independent channels is 6. These
independent channels can be driven in Input Capture, Output Capture, edge and
centering aligned PWM generation and One-pulse mode. The timers can be used
with Interrupts or DMA for the events: counter overflow/underflow, counter ini-
tialization,counter start, counter stop, Input capture, Output Capture and break
inputs. [24]

General-purpose timers are equipped with a 16 bit or 32 bit counter and a 16 bit
programmable prescaler. The maximal number of independent channels is 4.
These independent channels can be driven in Input Capture, Output Capture,
edge and centering aligned PWM generation and One-pulse mode. The timers
can be used with Interrupts or DMA for the events: counter overflow/underflow,
counter initialization,counter start, counter stop, Input capture, Output Capture
and break inputs. [24]

Basic timers are equipped with a 16 bit counter and a 16 bit programmable prescaler.
These timers have only one channel. These timers can be used to trigger a
Digital-to-Analog Converters (DAC)s. The timers can be used with the Inter-
rupt event: counter overflow. [24]

To leave as many options open as possible for the firmware generated by Simulink, one
of the basic timers is selected to call the model step. The basic timers are sufficient for
this task. Since the basic TIM6 in the default STM32CubeMX project [92] is mapped
to the Cortex-A7 processor, the unused TIM7 is selected.

The default configuration file is used as the base configuration. This has the advantage
that the configuration of, for example, the DDR, HSEM, IPCC, Independent Watch-
DoG (IWDG)s, system clock and much more are already done.

Figure 4 shows how many pins are occupied by the default configuration.
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Figure 5.30: Default STM32CubeMX Configuration of the STM32MP157C-DK2

All pins that are grayed out can still be configured.

The peripheries used in the example application can be derived from the of the existing
“Balance Car daughterboard” [39].

To give an overview of the existing hardware components that need to be connected
to the STM32MP1 by the “Balance Car daughterboard”, a summary of the hardware
components used in this project follows.
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Gyroscope and accelerometer

The 3-axis gyroscope and the 3-axis accelerometer sit together in one chip. The used
sensor type is the MPU6500. Gyroscope sensors and acceleration sensors can be
programmed for different scale ranges. The sensor can communicate via an Inter-
Integrated Circuit (I2C) or an SPI communication interface. [93]

Hall encoder

The Hall effect describes a voltage generated in a magnetic field, perpendicular to a
current flow. Hall effect proximity sensors detect magnetic field changes caused by the
movement of a metallic object. [94]
In figure 5.31 the measured hall signals are shown in a clockwise direction. In fig-
ure 5.32 the measured signals are shown counterclockwise. The rotation speed is cal-
culated from the periodic duration of one signal. It is seen that the direction of rotation
can be taken from the second sensor signal. If the edge of the blue signal rises while
the pink signal has a low level, the direction of rotation is clockwise, if the pink signal
has a high level at the time of the rise of the edge of the blue signal, the motor rotates
counterclockwise.

Figure 5.31: Hall signal clockwise
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Figure 5.32: Hall signal counterclockwise

Motor driver

The TB6612FNG motor driver is mounted on the board and is suitable for supplying
two Direct Current (DC) motors with energy. The TB6612FNG is controlled by two
input lines, a standby line, and a PWM signal. The two input lines enable the direction
settings (clockwise and counterclockwise), as well as short braking and a stop mode.
The standby line enables to put the motor controller in a standby mode. [95]

Motor

The motors installed in the self-balancing robot are 3 W DC motors. Their drive torque
is amplified by a gearbox with a ratio of 1:30. [96]

A image of the motor with its gearbox is seen figure 5.33.
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Figure 5.33: DC motor with speed reducer [96, p. 29]

Ultrasonic sensor

The ultrasonic sensor type HC-SR04, shown in figure 5.34, is a contactless distance
sensor, which has a measuring range from 2 cm to 4 m. [97]

Figure 5.34: Ultrasonic sensor

Balance Car daughterboard connectors

Table 5.2 shows connectors of the “Balance Car daughterboard”, these are mapped to
the peripheries of the STM32MP1 in the following steps.

In red, the table shows pins that belong to the power supply. In light green are the pins
that belong to the motor interface. In orange are shown Speed encoder interface pins.
In purple, the pin of the infrared receiver is shown. In dark gray are the pins of the
Wireless Local Area Network (WLAN) and Bluetooth interface. The blue pins are the
connection to the ultrasonic sensor. The VIN_ADC pin is shown in dark green. Light
gray are the pins that are not connected.

Some of the pins from table 5.2 must be assigned to fixed pins of the STM32MP1.
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Power supply MPU_INT 1 2 ESP32_EN

Motor interface IR_RXD 3 4 MTR_PWMA

Speed encoder interface MTRR_N 5 6 MTRR_P

Gyro & Accel interface MTRL_P 7 8 MTRL_N

Infrared receiver ESP32_CMD8 9 10 MTR_STBY

WLAN & Bluetooth interface VCC5_GPIO 11 12 GND

Ultrasonic sensor MTRR_A 13 14 MTRR_B

VIN_ADC MTRL_A 15 16 MTRL_B

MPU_CS_n 17 18 MTR_PWMB

MPU_SCL_SCLK 19 20 MPU_SDA_SDI

MPU_AD0_SDO 21 22 MPU_FSYNC

TRIG0 23 24 ECHO0

TRIG1 25 26 ECHO1

ESP32_UART0_TX 27 28 ESP32_UART0_RX

VCC3P3 29 30 GND

VCC5_GPIO 1 2 ESP32_UART0_CTS 31 32 ESP32_UART0_RTS

VIN_ADC 3 4 ESP32_CMD0 33 34 ESP32_CMD4

5 6 ESP32_CMD1 35 36 ESP32_CMD5

7 8 ESP32_CMD2 37 38 ESP32_CMD6

9 10 GND ESP32_CMD3 39 40 ESP32_CMD7

Table 5.2: Pin assignment of the Balance Car Daughterboard (cf. [39])

These are the powersupply and the ground pins. Some of the units available on the
“Balance Car daugtherboard” are not to be implemented in the sample application.
These devices are the infrared receiver and the WLAN and Bluetooth interface. The
pins belonging to these units are therefore not mapped to the STM32MP1 and remain
not connected.

During the mapping, it is tried to assign the pins to the Arduino connectors if it is
possible because they are the main connection of the MPU to the connection board.
Other connections that cannot be assigned to the Arduino connectors are mapped to
GPIO connectors CN2 [98].

Mapping the motor driver

The advanced timer TIM1 is selected as timer peripheral for the tow PWMs. The se-
lected PWM channels 3 and 4 are connected to the Arduino connectors. The remaining
inputs of the motor driver are connected to GPIO pins that are configured as outputs.
These GPIO pins are also located on the Arduino connectors.

The assignment can be seen in table 5.3.
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Balance car
daughterboard

Peripheral MP1 Function Pin MP1

MTR_PWMA TIM1 Channel 3 PWM PE13

MTRR_N GPIO Output PD14

MTRR_P GPIO Output PE10

MTR_PWMB TIM1 Channel 4 PWM PE14

MTRL_P GPIO Output PE9

MTRL_N GPIO Output PD1

MTR_STBY GPIO Output PA12

Table 5.3: Mapping the pins of the TB6612FNG to the peripheries of the MP1

Mapping the gyro and acceleration sensor

For the MPU6500 the SPI interface SPI5 is selected. The pins of SPI5 are located on
CN2. The remaining GPIOs are mapped to GPIO pins on the Arduino connector. The
assignment can be seen in table 5.4.

Balance car
daughterboard

Peripheral MP1 Function Pin MP1

MPU_INT GPIO Input PE8

MPU_CS_N GPIO Output PE7

MPU_SCL_SCLK SPI5 SCK PF7

MPU_SDA_SDI SPI5 MISO PF9

MPU_AD0_SDO SPI5 MOSI PF8

MPU_FSYNC GPIO Output PE1

Table 5.4: Mapping the pins of the MPU6500 to the peripheries of the MP1

Mapping the hall sensors

Two timers of the type general-purpose timer are selected for the two hall sensors. For
the hall sensor on the right motor the timer peripheral, TIM4 channel 4 is selected.
This is located on the Arduino connector. For the hall sensor on the right motor, timer
peripheral TIM2 channel 2 is selected. The corresponding pin is located on CM2. The
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second outputs belonging to the respective sensors are assigned to the GPIOs of the
Arduino connector configured as inputs. The assignment can be seen in table 5.5.

Balance car
daughterboard

Peripheral MP1 Function Pin MP1

MTRR_A TIM4 Channel 4 Input Capture PD15

MTRR_B GPIO Input PG3

MTRL_A TIM2 Channel 1 Input Capture PG8

MTRL_B GPIO Input PH6

Table 5.5: Mapping the pins of the hall sensors to the peripheries of the MP1

Mapping the ultrasonic sensor

For the ECHO0 pin of the ultrasonic sensor, the general-purpose timer TIM5 is se-
lected. A pin on the CN2 belongs to the assigned channel 2 of TIM5. The GPIO pin
needed for TRIG0 is assigned to a pin on the Arduino connector. This GPIO pin is
configured as an output. The assignment can be seen in table 5.6.

Balance car
daughterboard

Peripheral MP1 Function Pin MP1

ECHO0 TIM5 Channel2 Input Capture PH11

TRIG0 GPIO Output PE11

Table 5.6: Mapping the pins of the ultrasonic sensor to the peripheries of the MP1
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Mapping the voltage measurement

The pin where the battery voltage can be measured is assigned to the ADC1 peripheral.
The selected input of the channel is the single-ended input 6, which is located on the
Arduino connector. The assignment can be seen in table 5.7.

Balance car
daughterboard

Peripheral MP1 Function Pin MP1

VIN_ADC ADC1 IN6 Single-ended PF12

Table 5.7: Mapping the pin of the voltage mesurement to the peripheries of the MP1

Device tree

Since the peripherals mapped in section 5.6, except the GPIO peripherals, must be
assigned according to [14], it is necessary to compile the device tree [99] generated by
STM32CubeMX according to [100] and load it into the Linux OS.

107



5 Software implementation

5.7 Implementation of real-time firmware

In this section, the implementation of real-time software for the controller of the self-
balancing robot, running on the Cortex-M4, is described using the embedded coder in
MATLAB Simulink.

Model based implementation

This section describes the development of the real-time firmware for the control of
the self-balancing robot. The development is done by using model-based design. For
this purpose, a Simulink model is created. The embedded coder, the developed file
customization template, and the developed Simulink blocks are used. In addition,
some of the Simulink blocks from [6] are used.

In the following, the developed Simulink model is described. The overall view of the
Simulink model is shown in figure 5.36.

Figure 5.35: Overall view of the self-balancing robot Simulink model

The Simulink model shown in figure 5.36 was designed based on figure 5.62.

The target angle represents the reference variable w. After the controller block the
manipulated variable can be seen. The controlled variable of the subsystem that is
feedback is the theta filtered signal. Figure 5.36 shows the contents of the main sub-
system from figure 5.36.
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The content of the main subsystem is divided into 6 subsystems. To give a general
overview, the “Motor controller” subsystem forms the actuator and the “Get MPU6500
Sensor Data and Calculate Theta” subsystem the measuring device.

Inizialisation of MPU6500

The content of the “Inizialisation of MPU6500” subsystem, seen in figure 5.37, has the
task to initialize the MPU6500.

Figure 5.37: Subsystem: “Inizialisation of MPU6500”

An increasing sequence of numbers is generated by a counter, which is used to write
register settings in the “Register Init MPU6500” subsystem at specified points in time.
The counter increments every 10 ms. After 1.5 s the initialization is finished by the
step function. The “Register Init MPU6500” subsystem is shown in figure 5.38. In
this subsystem, the input signal of the counter is compared by the equal block with the
mapped values. If the value and the counter signal are equal, the triggered subsystem
connected to the equal block is executed. In the triggered subsystems, the registers of
the MPU6500 are configured, according to [101]. This is done by transmitting data
using SPI. The SPI transmission is done by using the SPI_DMA_Transmit block 5.21.
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Figure 5.38: Subsystem: “Register Init MPU6500”
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Get MPU6500 Sensor Data and Calculate Theta

The subsystem “Get MPU6500 Sensor Data and Calculate Theta” is divided into the
subsystems “Receive MPU6500 Data” and “Calculate robot angle”, seen in figure 5.39.
The task of the subsystem “Receive MPU6500 Data” is to read out the data of the
MPU6500 as they are available. The task of the subsystem “Calculate robot angle” is
to calculate the tilt angle θx of the robot.

Figure 5.39: Subsystem: “Get MPU6500 Sensor Data and Calculate Theta”

Figure 5.40 shows the contents of subsystem “Receive MPU6500 Data”. To receive
the sensor data 3 interrupts are used.
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Figure 5.40: Subsystem: “Receive MPU6500 Data”

The EXTI interrupt detects, when data is available in the MPU6500 sensor, by detect-
ing the MPU_INT pin signal of the sensor.

Inside the EXTI Function-Call subsystem, the EXTI IRQ status flag is reset using the
EXTI_flag_handler block 5.25, and a data request is transmitted via SPI using the
MPU6500_DATA_REQUEST block 5.29. The transmission of the data request trig-
gers a DMA2 Stream3 transmission complete IRQ. The corresponding interrupt status
bit is reset by the DMA_flag_handler block 5.23 in the Function-Call subsystem of the
DMA2 Stream3 IRQ. After the SPI data, sent by the MPU6500 sensor, is received by
the DMA2 stream2, the corresponding IRQ is triggered.

In the Function-Call subsystem of the DMA2 Stream2 IRQ, the corresponding inter-
rupt status bit is reset by the DMA_flag_handler block 5.23 and the received sensor
data is returned by the SPI_DMA_Receive block 5.22. The sensor data is fed into the
“MPU6500 data processing” subsystem via the rate transition block. The content of
the “MPU6500 data processing” subsystem is seen in figure 5.41.
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Figure 5.41: Subsystem: “MPU6500 data processing”

The figure shows how the raw data of the sensor is converted into data type int.
According to [101] every acceloration and gyro values is stored in a 16 bit register.
To transfer these values through a SPI running with a 8 bit data width, the values are
seperated in a high byte and a low byte. The high byte of the value is shifted 8 bits to
the left and is then combined bitwise by a or operation with the lower byte.

In the upper half of figure 5.41 the acceleration values are formed, in the lower half the
gyro values. Then a scaling factor is applied to each value. The bus signals accel(x,y,z)
and gyro(x,y,z) are fed into the subsystem “Calculate robot angle”,seen in figure 5.42.

Figure 5.42: Subsystem: “Calculate robot angle”
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In the subsystem “Calculate robot angle”, the robot tilt angle is calculated from the
values of the bus signals accel(x,y,z) and gyro(x,y,z). The third subsystem input Sensor
init is used to feed the data processing with a constant 0 value during the initialization
of the MPU6500. In the upper area, the tilt angle θx of the robot is calculated from the
acceleration value of the x axis ax and the acceleration value of the z axis az.

θx = arctan
Ä

ax
az

ä
(5.2)

In the middle, the gyro values gyroy and gyroz are calculated. The Sensitivity Scale
Factor KSensitivity = 16.4 taken from [93] is used for this. Due to the geometric arrange-
ment, the gy value must be multiplied by −1.

gyroy =
gy

KSensitivity
· (−1) (5.3a)

gyroz =
gz

KSensitivity
(5.3b)

In the lower half of figure 5.42, θx and gyroy are routed into the Kalman filter.

Implementation of a Kalman filter

Since the acceleration values are strongly influenced by impacts, it is not possible to
control the robot without filtering the values of the acceleration and gyro sensor. The
measurement of the acceleration values is strongly influenced by strong changes in the
rotation speed, especially by directional changes. The angle θx calculated from the
acceleration values is so strongly influenced by these impacts that deviations from the
actual angular position occur.

In this physical system, the redundancy of the measured values acceleration, resulting
in an angular position θx, and gyro value gyroy can be used to apply the Kalman filter
described in section 2.11. The interrelated variables are shown in equation (5.4).

gyroy(t) = θ̇x(t) (5.4)
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The state vector x(t), the derived state vector ẋ(t) and the input vector y(t) for the state
differential equation (2.8) are determined in equation (5.5a).

x(t) =

[
θx(t)

gyroy(t)

]
(5.5a)

ẋ(t) =

[
θ̇x(t)

˙gyroy(t)

]
=

[
gyroy(t)

0

]
+

[
0
1

]
· z(t) (5.5b)

System matrix A, input matrix B, output matrix C, feedthrough matrix D, and the
matrix of the system noise G are set up and inserted into the state-space equations,
seen in equation (5.6).

ẋ(t) =

[
0 1
0 0

]
︸ ︷︷ ︸

A

·x(t)+

[
0
0

]
︸︷︷︸

B

·u(t)+

[
0
1

]
︸︷︷︸

G

·z(t) (5.6a)

y(t) =

[
1 0
0 1

]
︸ ︷︷ ︸

C

·x(t)+

[
0
0

]
︸︷︷︸

D

·u(t) (5.6b)

The state-space model is discretized. To do this, the matrices A, B, and G are trans-
formed into Ad , Bd and Gd as seen in equation (2.11). The results are shown in equa-
tion (5.7).

Ad =

[
1 Ts

0 1

]
, Bd =

[
0
0

]
, Gd =

[
Ts

1

]
(5.7)

The observability of the system is verified as described in section 2.11.

The rank of the observation matrix for the discretized system S∗B is calculated.

To determine if the system is observable the rank of the ,observation matrix for the
discretized system S∗B must be equal to the order of the system. [34]

The order of this system is n= 2. The result of this calculation is seen in equation (5.9).
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S∗B =

[
C

C ·Ad

]
(5.8)

Rang(S∗B) = Rang

([
C

C ·Ad

])
= 2 (5.9)

Since Rang(S∗B) = n, the system is observable, and the Kalman filter can be applied.

To apply the Kalman filter the values of the covariance matrix of the system noise Q

and the covariance matrix of the measurement noise R have to be determined. [34]

It is assumed that the system/process noise vector z(k) is a scalar quantity.

Therefore the covariance matrix of the system noise Q will also be a scalar value.

It is assumed that the angular velocity changes by a maximum of 3°
1ms ≈ 3ms−1 within

a sample period. It is assumed that the change of the angular velocity is normally
distributed. It is assumed that the maximum velocity change is approximately to value
1 ·σ .

From these assumptions, the system noise Q(k) can be calculated as follows:

Q(k) = σ
2
v =
Ä

3ms−1

1

ä2
≈ 9 µ/s-2 (5.10)

For the calculation of the covariance matrix of the measurement noise R the
assumptions are met, that the noise variables do not influence each other
(Cov(vθx

(k),vgyroy
(k)) = 0). It is also assumed that the noise does not change over

time.

From the measurement signals recorded while the robot is in the resting position, the
noise variances σ2

θx
and σ2

gyroy
can be estimated.

Figure 5.43 shows the resting position measurement signal of θx.
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Figure 5.43: Measured noise signal of the tilt angle θx

From the signal it is estimated that σ2
θx
≈ 0.8(°)2.

Figure 5.44 shows the resting position measurement signal of gyroy.

Figure 5.44: Measured noise signal of gyroy

From the signal it is estimated that σ2
gyroy
≈ 330 µ(°/s)2.

From the estimated noise variances, the covariance matrix of the measurement noise
R(k) is determined.
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R(k) = Var(v(k)) =

(
Var(vθx(k)) Cov(vθx(k),vωx(k))

Cov(vθx(k),vωx(k)) Var(vωx(k))

)
(5.11a)

=

(
σ2

θx
0

0 σ2
gyroy

)
≈

(
0.8(°)2 0

0 330 µ(°/s)2

)
(5.11b)

The parameters Ad , C, Q, and R are entered into the Kalman filter block [102] in
Simulink, as shown in figure 5.45.

Figure 5.45: Setting up the kalman filter block
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Figure 5.46 shows the response (orange) of the Kalman filter to the noisy and disturbed
input signal (green).

Figure 5.46: Demonstration of the applied Kalman filter

Motor Controller

Figure 5.47 shows the contents of the “Motor Controller” subsystem. The task of
the“Motor Controller” subsystem is to control the motor driver.

The subsystem has the two inputs variables, the manipulated variable, and the robot
tilt angle θx. In the upper third of figure 5.47, the interrupt block of TIM1 is shown.
The Function-Call subsystem triggered by the TIM1 interrupt block resets the status
interrupt flag by using the TIM_CC_Interrupt_Config_Flag_Reset 5.18 block, and sets
the duty cycle of the two PWM outputs by using the TIM_Set_DC 5.16 blocks. The
duty cycles of the PWM are set to the amount of the manipulated variable, which is
scaled with the factor 100 before. The “Saftey STOP” subsystem checks whether the
angle θx is greater than 60. If this is the case, a stop signal is passed to the “Motor
Driver Logic” subsystems. In addition, the MTR_STBY input of the motor controller
is switched to high level, which causes the motor controller to be put into standby
mode. The GPIO-write blocks shown on the right are taken from [6].
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Figure 5.47: Subsystem: “Motor Controller”

The content of the “Motor Driver Logic” subsystems is shown in figure 5.48.

Figure 5.48: Subsystem: “Motor Driver Logic”

The input signals of the “Motor Driver Logic” subsystem are the manipulated variable,
which carries the information about the direction of rotation, and the STOP signal. If
the direction is greater than zero, the motor rotates clockwise. Otherwise, it rotates
counter-clockwise.
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The logic shown in figure 5.48 is derived from table 5.8.

Table 5.8: Hardware-Software Control Function, taken from [95, p. 4]

The subsystems “Motor Driver Logic Motor Left” and “Motor Driver Logic Motor
Right” are identical except for the outputs. The outputs of the “Motor Driver Logic
Motor Right” subsystem are interchanged so that oppositely mounted motors drive in
the same direction.
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Ultrasonic sensor

The content of the “Ultrasonic sensor” subsystem is seen in figure 5.49.

Figure 5.49: Subsystem: “Ultrasonic sensor”

In the upper half, the GPIO-Write block [6] is toggled by a function generator. The
configured output of the GPIO-Write block is connected to the TRIG0 pin of the ultra-
sonic sensor. According to [97], the ultrasonic sensor returns a high-level pulse after
the sensor was triggered. The measured distance is calculated from the time taken by
the high-level pulse. This is done by equation (5.12):

d =
thl · vsound

2
(5.12)

The distance is represented by d, time of the high-level pulse is represented by thl , and
the sound velocity is represented by vsound (according to [97] vsound ≈ 340ms−1).

The ECHO0 pin, at which the high-level pulse occurs, is connected to the configured
input of the TIM5. The interrupt block, corresponding to TIM5, is seen in the lower
half of figure 5.49. Inside the Function-Call subsystem of the TIM5 hardware interrupt
block, the TIM_Get_Counter block 5.19 is used to reset the interrupt status flag and to
return the counter value. The counter value, returned by the TIM_Get_Counter block,
is passed to a MATLAB function, which allows every second value to pass. This
is necessary because the first of each two interrupts ist triggered by the rising edge
of the high-level pule and therefore has no information about the length of the high
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level pulse. The output of this MATLAB function is the output of the Function-Caller
subsystem. The signal that has the information of the counter value is converted in the
subsystem “Calculate Distance” into distance in cm.

To convert the counter value into a distance, the frequency of a counter tick fCKCNT

must be known. The prescaler is used to specify that fCKCNT is 1 MHz. Since the clock
frequency in front of the prescaler fCKPSC is 208.87MHz, the prescaler is set to 208−1
according to equation (A.1). Now, according to equation (5.12), the factor Kconv for
the conversion from counter value to distance in cm can be determined. The result is
Kconv =

1cm
58 .

Figure 5.50 shows the required STM32CubeMX configuration.

Figure 5.50: STM32CubeMX configuration of TIM5

The selected settings are framed in red.
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ADC Battery Voltage

Figure 5.51 shows the contents of the “ADC Battery Voltage” subsystem.

Figure 5.51: Subsystem: “ADC Battery Voltage”

The ADC_DMA_Data_Reqest block 5.27 is a triggered subsystem. This triggered sub-
system gets triggered at the rising edge of the function generator. Inside the Function-
Caller subsystem of the DMA triggered interrupt, the ADC_DMA_ISR block 5.28
calls the ADC DMA interrupt handler and returns the recorded ADC values to the
model. After the rate transitions block a mean value of the recorded ADC values is
calculated.

KADC is calculated from the resistance values R46 and R47 of the voltage dividers on the
self-balancing daughter board [39], the ADC resolution ADCres, which is configured
to 16 bits, and the maximum ADC voltage VREF = 3.3V [24]. The calculation is based
on Kirchhoff’s mesh analysis [103]. Resulting from this the factor KADC is calculated,
seen in equation (5.13).

KADC =
VREF

ADCres
· R46 +R47

R46
≈ 192.85 µV (5.13)

The battery voltage VDC_IN is calculated as follows:
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VDC_IN = KADC ·ADC_value (5.14)

Figure 5.52 shows the voltage divisor.

Figure 5.52: Voltage divisor [39, p. 6]

In figure 5.53 the STM32CubeMX setting for the configuration of the ADC is shown.
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Figure 5.53: STM32CubeMX configuration of ADC1

In figure 5.54 the STM32CubeMX setting for the configuration of the DMA used with
the ADC is shown.

Figure 5.54: STM32CubeMX configuration of the DMA for ADC1

Hall encoders

Figure 5.55 shows the contents of the “Hall encoder” subsystem.
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Figure 5.55: Subsystem: “Hall encoders”

In figure 5.55, on the left, you can see the interrupt blocks of the timers configured as
input Capture/Compare. Within the Function-Caller subsystem, the TIM_Get_Conter
block 5.19 is used to measure the pulse duration at hall encoder signal A. With the
GPIO_Get_Input block A.19 the level of the hall encoder signal B is detected. The
rotation speed is calculated from the hall encoder signal A. The direction is determined
from the hall encoder signal B. The hall encoder signals are shown in figure 5.56.

Figure 5.56: Hall encoder signal A and B

The rotation speed and the direction are processed in the “Calculation of the wheel
Speed” subsystems. If the signal B is equal 1 a factor of -1 is added to the calculated
speed.

The speed of the wheels is calculated by the measured counter value CNT , the max-
imum motor frequency f̂motor ( f̂motor ≈ 4.43s−1 [96, p 29]), the minimum pulse
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duration ťpd of signal A, which is recorded during the maximum motor frequency
(ťpd = 501.57 µs 4.8), the radius of a wheel rw (rw = 0.031m), and the time of a counter
increment tCNT must be known. tCNT is set to 1 µs, as described in section 5.7. The
timer configuration for this is seen in figure 5.57.

The speed of the wheel, when neglecting the slip, can be calculated as follows:

vwheel =
2 ·π · rw · f̂motor · ťpd

(CNT +1) · tCNT
(5.15)

The conversion is calculated by the dividend Dhall = vwheel ·(CNT +1). It is calculated
in kmh−1 by:

Dhall =
2 ·π · rw · f̂motor · ťpd

tCNT
≈ 1558.04kmh−1 (5.16)

The wheel speed right signal is multiplied by -1 because the motors are mounted in
the opposite direction. The STM32CubeMX cunfiguration for the timers is shown in
figure 5.57.

Figure 5.57: STM32CubeMX configuration of TIM2 and TIM4

Interprocessor communication

The interprocessor communikation is done by the Simulink blocks OpenAMP-
Transmit and OpenAMP-Receive taken from [6]. Figure 5.58 shows the transmission
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of the signals Theta, Battery Voltage and Distance.

Figure 5.58: Transmitting IPC data

The signals are distributed within the subsystem to an array of the data type
(uint8_t) and sent to the Cortex-A7 by the OpenAMP-Transmit block.

Figure 5.59 shows the receiving of the data send by the Cortex-A7.

Figure 5.59: Receiving IPC data

The received data array is converted in the subsystem into the 3 mapped signals P, D,
and I.

5.8 Control system for the inverted pendulum

In this chapter the main elements of the plant are analyzed. For this purpose, a mathe-
matical description of the inverted pendulum is developed. Based on this mathematical
description, the controller is implemented.

An inverted pendulum is a well-known problem in control engineering where the pen-
dulum is held in the forced unstable upper position. [104]

From the physical model of the inverted pendulum, high real-time requirements for the
system can be derived. Compared to a stable system, it requires fast and accurate angle
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or position sensors. For this reason, the implementation of a controller for an inverted
pendulum is suitable to demonstrate the real-time capability of a system. [105]

The model of an inverted pendulum consists of a stem, which stands upright in space,
as shown in figure 5.60.

y

x

Figure 5.60: Schematic representation of an inverted pendulum in space

Because the bottom point of the stem is movable on the plane, the pendulum tilts when
the system is affected by an external force. This can be prevented by a regulation at
the installation point of the pendulum stem. [106]
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Derivation of the mechanical controlled system

Using the model in figure 5.61, equations of motion for the pendulum are formulated.
To determine the plant, the degree of freedom is restricted. This means that the left and
right wheel accelerate the robot in a straight line alonge the x-axis. The mathematical
description is done without linearization. The mass of the robot is described by mp.
The distance between the axis of the wheels and the center of mass is given as length
l. In the figure 5.61, the center of gravity is symbolized as a sphere. In the real system,
the mass moment of inertia is determined by the shape of the robot. This shape can be
approximated as a cuboid.

Mass moment of inertia for a cuboid according to [107, p. 76]:

Jx =
1

12
m(b2 +h2) (5.17)

with b as cuboid depth and h as cuboid height. The tilt angle of the robot is seen as θx.
FHx and FV x are horizontal and vertical reaction forces.
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z

x

FHx, −FWx

FV x

zpx

xpx

θx

mp ·g

Figure 5.61: Model of the self-balancing robot

Translation:

mw · ẍwx = FWx−FHx (5.18a)

mp · ẍpx = FHx (5.18b)

mp · z̈px = FV x−mp ·g (5.18c)

Rotation:

Jx · θ̈x = FV x · l · sinθx +FHx · l · cosθx (5.19)
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Geometry:

xpx = xwx− l · sinθx (5.20a)

zpx = l · cosθx (5.20b)

In the following, the large-signal performance of the plant is derived.

Derivation of the time-variable function of θx:

f (t) = θx (5.21a)

f ′(t) =
dθx

dt
= θ̇x (5.21b)

f ′′(t) =
d2θx

dt2 = θ̈x (5.21c)

Derivation of the time-variable function of sin(θx):

h(t) = sin(θx) (5.22a)

h(t) = sin( f (t)) (5.22b)

h′(t) = cos( f (t)) · f ′(t) (5.22c)

h′′(t) = cos( f (t)) · f ′′(t)+ f ′(t) · f ′(t) · (−sin( f (t))) (5.22d)

h′′(t) = cos(θx) · θ̈x− θ̇
2
x · sin(θx) (5.22e)

Derivation of the time-variable function of cos(θx):

g(t) = cos(θx) (5.23a)

g(t) = cos( f (t)) (5.23b)

g′(t) =−sin( f (t)) · f ′(t) (5.23c)

g′′(t) =−sin( f (t)) · f ′′(t)+ f ′(t) · f ′(t) · (−cos( f (t)) (5.23d)

g′′(t) =−sin(θx) · θ̈x− θ̇
2
x · cos(θx) (5.23e)

The time derivatives are inserted into the reflection forces.
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For FHx considering that the geometry equation (5.20a) and the derivation equa-
tion (5.22e) is used:

FHx = mp · ẍpx (5.24a)

FHx = mp ·
d2xpx

dt2 (5.24b)

FHx = mp ·
d2

dt2 (xwx− l · sin(θx)) (5.24c)

FHx = mp · ẍwx−mp · l · θ̈x · cos(θx)+mp · l · θ̇ 2
x · sin(θx) (5.24d)

For FV x considering that the geometry equation (5.20b) and the derivation equa-
tion (5.23e) is used:

FV x = mp · z̈px +mp ·g (5.25a)

FV x = mp ·
d2zpx

dt2 +mp ·g (5.25b)

FV x = mp · l · d2

dt2 cos(θx)+mp ·g (5.25c)

FV x =−mp · l · θ̈x · sin(θx)−mp · l · θ̇ 2
x · cos(θx)+mp ·g (5.25d)

Translational movement: The reaction forces equation (5.24d) is inserted into the
translation equation (5.18a).

ẍwx(mw +mp) = Fwx +mp · l · θ̈x · cos(θx)−mp · l · θ̇x
2 · sin(θx) (5.26)

Rotational movement: The reaction forces equation (5.24d) and equation (5.25d) are
inserted into the rotation equation (5.19).

Jx · θ̈x = (mp · l)(−l · θ̈x · sin 2(θx)− l · θ̇x
2 · cos(θx) · sin(θx)+g · sin(θx)+

ẍwx · cos(θx)− l · θ̈x · cos 2(θx)+ l · θ̇x
2 · sin(θx) · cos(θx)) (5.27)
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Using the Trigonometric Pythagoras equation (5.28a) and the Addition Theorem equa-
tion (5.28b) [108, p. 94]

sin2(x)+ cos2(x) = 1 (5.28a)

sin(x1) · cos(x2)− cos(x1) · sin(x2) = sin(x1− x2) (5.28b)

equation (5.27) is solved according to equation (5.29).

θ̈x(mp · l2 + Jx) = mp ·g · l · sin(θx)+mp · ẍwx · l · cos(θx) (5.29)

After all, kinematic relations of the inverted pendulum are described, the functional
equation θx = f (Fwx) is tried to be set up. In this case, the equations of the translational
and the rotational motion with their sin(θx) and cos(θx) terms show nonlinear behavior,
so it is necessary to eliminate their sin(θx) and cos(θx) terms first.

For this purpose, a linearization is performed. The linearization proceeds as follows:
A proportionality coefficient Kp for the operating point is formed as a result of the
linearization. For this purpose, the non-linear element is converted into an equation
of the line with the aid of the Taylor series. For this purpose, the Taylor series is
terminated after the first theorem. The result is a linear equation through the operating
point. [35]
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Taylor series [108, p. 182]

f (x) =
∞

∑
n=0

f (n)(x0)

n!
(x− x0)

n (5.30)

For the therm sin(x) working at the operating point x = 0:

f (x) =
sin(0)

0!
(x−0)0 +

cos(0)
1!

(x−0)1 (5.31a)

f (x) = x (5.31b)

It results that the proportionality coefficient Kpsin(θx)
= θx.

For the term cos(x) working at the operation point x = 0:

f (x) =
cos(0)

0!
(x−0)0 +

−sin(0)
1!

(x−0)1 (5.32a)

f (x) = 1 (5.32b)

It results that the proportionality coefficient Kpcos(θx)
= 1.

Moreover, the assumption is made that potencies of θx or the derivatives of θx with
higher exponent than 1 can be set to 0, since their value, around the operating point
θx ≈ 0 are negligibly small.

After eliminating the nonlinear terms and the negligible potencies, equation (5.26) and
equation (5.29) yield the following equations:

ẍwx(mw +mp) = Fwx +mp · l · θ̈x (5.33a)

θ̈x(mp · l2 + Jx) = mp ·g · l ·θx +mp · l · ẍwx (5.33b)

Now the relationship between θx and the force Fwx is determined by inserting in ẍwx.
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Afterwards for θ̈x the difference theorem for the second derivative is applied. [35, p. 67]
Then the transfer function of the pendulum can be determined by substituting.

Gs(s) =
b0

s2 ·a2 + s ·a1 +a0
(5.34a)

b0 =
1

g · (mw +mp)
(5.34b)

a0 =−1 (5.34c)

a1 = 0 (5.34d)

a2 =
1
g
(l +

b2

12 · l
+

l
12
− 1

mw +mp
) (5.34e)

After the transfer function has been formulated, the stability of the system can be
investigated.

For this purpose, the characteristic equation of the system is examined. The system
has an unstable resting position if at least one zero of the characteristic equation does
not have a negative real part. [35, p. 871]

s2 · 1
g
(l +

b2

12 · l
+

l
12
− 1

mw +mp
)−1 = 0 (5.35a)

s1 =+

Ã
1

1
g(l +

b2

12·l +
l

12 −
1

mw+mp
)

(5.35b)

s2 =−

Ã
1

1
g(l +

b2

12·l +
l

12 −
1

mw+mp
)

(5.35c)

Equation (5.35b) shows that one of the zeros of the characteristic equation has a posi-
tive real part. So the system has an unstable resting position.

Since Gs is only the transfer function of the mechanical tilt moment, many unknown
transfer functions remain in the controlled system. The unknown transfer functions
are highlighted in gray in figure 5.62. The reference variable w determines how the
angle θx should be. It is compared with the measured angle θx at the addition point.
From the control difference (w− x) the manipulated variable y is calculated by the
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controller. The manipulated variable y is superimposed by the disturbance variable z1.
In figure 5.62 the controlled system is the multiplication of GDriver, GMotor, and Gs.
The controlled system outputs the controlled variable x. The controlled variable is fed
back via the measuring device GSensor. [35]

GsGMotorGDriver

GSensor

GController

-

w xy

z1

Figure 5.62: System overwiew of the self-balancing robot

Experimental analysis of the overall control system

An experimental analysis of the entire system should help to determine the transfer
function of the whole system, in order to subsequently dimension a controller for
this system. In the expirimental analysis of systems, a step function is applied to the
system at rest, while the output function of the system is measured. Afterwards the
non-parametric system can be transformed into a parametric system. The result is the
transfer function of the entire system. [35]

Figure 5.63 shows a schematic diagram of how the experimental analysis is performed.
The step function is applied to y, while the output function is recorded at xmeasured .
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GsGMotorGDriver

GSensor

xy

z1

xmeasured

Figure 5.63: Set up to record the step response

The self-balancing robot is held in the unstable rest position while a step function with
the peak value 0.1 is applied to the system as manipulated variable y. The manipulated
variable 0.1 ensures that the PWM is set to a duty cycle of 10% and the robot starts
moving in one direction. Since the system is not controlled, the robot tips over. During
this, the angle θx is recorded. The resulting response xmeasured = System_out and the
step function = System_in are shown in figure 5.64. The step function is shown on a
scale of 100:1.
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Figure 5.64: Step response of the System recorded at a step sie of 1 ms

The MATLAB “System Identification Toolbox” [109] is used to create a transfer func-
tion from the step response. The window of the toolbox is seen in figure 5.65.
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Figure 5.65: Window of the “System Identification Toolbox”

Creating the transfer function is done by importing the step function and the system
response in the “System Identification Toolbox”, seen in figure 5.66.
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Figure 5.66: Importing data to the “System Identification Toolbox”

In the next step, it is necessary to specify how many poles and zeros are to be calculated
by the “System Identification Toolbox”. To determine this, the system from figure 5.63
is summed up as described in [35] to form a transfer function. This transfer function
GResponse can be seen in equation (5.38).

GResponse(s) = GDriver(s) ·GMotor(s) ·Gs(s) ·GSensor(s) (5.36)

It is estimated that GResponse(s) can be approximated by a transfer function with 3 poles
and 2 zeros. This is specified in the window shown in figure 5.67.
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Figure 5.67: Estimation of the number of poles and zeros of the transfer function

The transfer function determined by the “System Identification Toolbox” can be seen
in equation (5.38).

GResponse(s) =
−493 · s2 +8074 · s−5.9 ·104

s3 +7.232 · s2 +50.97 · s+58.3
(5.37)

In figure 5.68, the recorded step response (green) and the step response of the calcu-
lated transfer function (blue) can be seen.
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Figure 5.68: Comparison between the recorded step response of the real system (green)
and the one calculated by the “System Identification Toolbox” (blue)

To compare the step responses of the derived transfer function with the step responses
shown in figure 5.68, the gravity, the geometry parameters, and the masses of the self-
balancing robot are inserted into the equation (5.34a). To make a comparison, the
derived function must be multiplied by a factor KRAD_to_DEG = 180

π
to convert radians

into degree. The parameters insertet in the eqation are g=−9.81ms−2, mw = 0.090kg,
mp = 0.706kg, b = 0.070m, and l = 0.1485m.

The resulting transfer function is seen in equation (5.38).

G′s(s) = KRAD_to_DEG ·Gs(s) =
−23.05

0.3499 · s2−3.142
(5.38)

If the transfer function G′s(s) is loaded with a step function that has a peak value of
2.118, it approaches the measured and the calculated step response. Seen in figure 5.69.

This comparison is shown in figure 5.69. The recorded step response is plotted in
green, the step response of the transfer function calculated by the “System Identifica-
tion Toolbox” in blue, and the step response of the derived transfer function in red.
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Figure 5.69: Comparison between the step response recorded of the real system
(green), the one calculated by the “System Identification Toolbox” (blue),
and the one derivated by hand for the mechanical tilting action (red)

Figure 5.69 verifies the recorded transfer function and the transfer function calculated
by the “System Identification Toolbox” with the derived transfer function of the in-
verted pendulum.

To determine the minimum required sample time for quasi-analog system control, the
step response of the transfer function has to be analyzed. [35]

For this purpose, the transfer function calculated with the “System Identification Tool-
box”, is used to determine the delay time Tu, the compensation time Tg and the settling
time T95. Then, the minimum required sampling time T is determined using the ta-
ble [35, p. 498]. The line in the table [35, p. 498] where Tg≥ 10 applies to the analyzed
system. It follows according to the table [35, p. 498] that T ≤ 0.1∗Tg must be selected.

The step function and the determination of its characteristic values are shown in fig-
ure 5.70.
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The values Tu ≈ 0.3s, Tg ≈ 0.9s, and T95 ≈ 2.4s are read off.

It follows that the minimum required sample time T for quasi-analog control must be
T ≤ 90ms.

Once the minimum sample time is checked, it is considered in which period new gyro
and acceleration values are recorded. From table 4.8, it is seen that the sensor values
are read in a minimum period of 997.62 µs. To process each set of sensor values in
about a separate model step the sample time is set to 90 times the minimum required
sample time (T = 1ms).

The “Control System Toolbox” [110] is used to design a controller for the Simulink
model shown in figure 5.71. In the model the transfer function calculated with the
“System Identification Toolbox”, is used as plant. The two step functions represent
a 1 ms puls with size 1 to disturb the plant. The plant is sampled with T = 1ms by
the “Discretization” subsystems. The Controller C calculated by the “Control System
Toolbox” must regulate the disturbing pulse. The transfer function of the controller
used in the following figures can be seen in equation (5.39).

C =
−0.0014829(s+0.6399)

s
(5.39)

Figure 5.71: Controller design in MATLAB Simulink

Figure 5.72 shows the “Control System Toolbox” during the design of the Controller
C.
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Figure 5.72: “Controll Syste Design Toolbox”

Figure 5.73 shows the system response to the disturbance pulse.

Figure 5.73: Controller design in MATLAB Simulink

It can be seen that controller C can regulate the disturbance pulse.
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A PID controller for the self-balancing car can also be determined empirically, accord-
ing to [111]. This can be done in the real system using the external mode. The PD con-
troller parameters found in this process are P = 0.0196 D = 0.0187, and N = 28.234.
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5.9 Implementation of non real-time application

Because the implementation of the non-real-time application is not the focus of this
thesis, it will only be touched upon.

To continue using the external mode via XCP on TCP/IP, the application “Exter-
nal_mode” forms the fundament of the non real-time application. The implementation
of the graphical components of the non real-time application are performed with the
use of the Light Versantil Graphics Library (LVGL) [112]. LVGL is selected, because
it has been used in a previous project. The LVGL supports the GIMP-Toolkit (GTK)
driver [113] (GNU Image Manipulation Program (GIMP), GNU s Not UNIX (GNU)).
The GTK driver is included in the “st-image-westone” [114] OS, which is running on
the Cortex-A7.

The application created is divided into two pages. The page “Slider”, seen in fig-
ure 5.74, shows 3 sliders to tune “P”, “I”, and “D” parameter of the controller. The
page “Diagram”, seen in figure 5.75, monitors “Theta”, “Battery Volage”, and “Dis-
tance”.

Figure 5.74: Non real-time application: “Slider” page
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Figure 5.75: Non real-time application: “Diagram” page
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6 Verification

The requirements specifications defined in item A.1.1 are checked by the following
verification plan. The verification procedure with the corresponding tools is also de-
scribed in the plan.

The instrument used for the time-critical measurements during verification is the os-
cilloscope shown in table 4.7.

The main measurements are described under table 6.1.
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No./ID Non-technical title Verification of the requirement Tools

Req_01 Code generation

It is verified, whether the generated code can be integrated
into a STM32CubeMX project.

It is verified whether the firmware compiled and linked
from the code generated by using the developed coder target
within Simulink, and the code of the STM32CubeMX
project, can be executed on the Cortex-M4 core.

It is verified whether the firmware can be operated with a
sample time of 100 µs.

It is verified whether the model running
on the Cortex-M4 outputs the correct
values corresponding to the
Simulink model.

It must be verified that the model step is
called by the timer interrupt.

Results:

The generated code can be integrated into
a STM32CubeMX project.

The firmware compiled from the generated code
and the STM32CubeMX can be executed on the
Cortex-M4.

The firmware can operate with a sample time of 100 µs.
(Sample times of 20.83 µs = 48 kHz can be achieved)

The model that is executed on the hardware
returns the correct values.

The model step is called by the TIM7 interrupt.

Tests passed.

STM32MP1,
Computer,
MATLAB Simulink,
Embedded Coder,
Debug-tool,
Build environment
for cross-compiling,
Oscilloscope,
External mode

Req_02
External mode
via XCP

It is verified whether the external mode via XCP
provides a correct data transfer
between the Cortex-M4 and the development
computer.

Result:

The External mode via XCP transfers the data
correctly.

Test passed.

STM32MP1,
Computer,
MATLAB Simulink,
Embedded Coder,
Build environment
for cross-compiling,
Network communication
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No./ID Non-technical title Verification of the requirement Tools

Req_03
Set up
project build
environment

It is verified whether the set up build project
can compile and link the generated code from MATLAB
Simulink and STM32CuebMX.

Result:

The developed build project can compile and
link an executable frimware from the available
code sources (*.c,*.h,*.s,*.ld).

Test passed.

Computer,
arm-none-eabi-gcc
cross-compiler,
CMake

Req_04
Acceleration
and gyro data

It is verified whether the MPU6500 can be implemented via
Simulink blocks, using the codegeneration for the Cortex-M4 core.

It is verified whether the register data of the MPU6500 are
read out from the sensor via SPI.

It is verified whether the acceleration and gyro measurement
data of the MPU6500 is read out within 500 µs.

It is verified whether the sensor outputs a tigger signal.

It is verified that the
Hardware Abstraction Layer (HAL) is not used.

Results:

The MPU6500 can be implemented by developed Simulink blocks,
using the codegeneration for the Cortex-M4 core.

The register data of the MPU6500 are read out via SPI.

The acceleration and gyro measurement data of the MPU6500
are read out within 500 µs.

The MPU6500 outputs a trigger signal.

The HAL has not been used.

Tests passed

STM32MP1,
Computer,
MATLAB Simulink,
Embedded Coder,
Build environment
for cross-compiling,
Oscilloscope,
External mode,
Self-balancing
robot

Req_05 Motor control

It is verified whether the implementation of the motor control can be done by
Simulink blocks, using the codegeneration for the Cortex-M4 core.

It is verified whether the setting of the duty cycle of the PWM is done
within 100 µs.

It is verified whether the direction/stop logic is working.

It is verified whether the HAL has not been used.

Result:

The implementation of the motor control can be done by Simulink blocks.

Setting the duty cycle of the PWM is done within 100 µs.

The direction/stop logic is working properly.

The HAL has not been used.

Tests passed

STM32MP1,
Computer,
MATLAB Simulink,
Embedded Coder,
Build environment
for cross-compiling,
External mode
Self-balancing
robot
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No./ID Non-technical title Verification of the requirement Tools

Req_06 Hall encoder

It is verified whether the implementation of the hall encoders can be done by
Simulink blocks, using the codegeneration for the Cortex-M4 core.

It is verified whether a measurement of the hall encoder value is
performed within 50 µs.

It is verified whether the direction of rotation of the motor to which
the hall sensor is attached can be recorded.

It is verified whether the HAL has not been used.

Result:

The implementation of the hall encoders can be done by Simulink blocks.

The time measurement and the detection of the direction is performed
within 50 µs.

The direction of rotation of the motors to which the Hall sensors are
attached is detected.

The HAL has not been used.

Tests passed.

STM32MP1,
Computer,
MATLAB Simulink,
Embedded Coder,
Build environment
for cross-compiling,
External mode
Self-balancing
robot

Req_07 Ultrasonic sensor

It is verified whether the ultrasonic sensor can be implemented via
Simulink blocks, using the codegeneration for the Cortex-M4 core.

It is verified whether it is possible to adjust when the measurement
of the ultrasonic sensor takes place.

It is verified that the acquisition of the signal returned by the
ultrasonic sensor is performed within 100 µs.
It is verified whether the HAL has not been used.

Results:

The ultrasonic sensor can be implemented using the developed
simulink blocks.

The point in time when the ultrasonic sensor measurement should
take place can be adjusted

The acquisition of the returned value of the ultrasonic sensor is
performed within 100 µs.

The HAL has not been used.

Tests passed

STM32MP1,
Computer,
MATLAB Simulink,
Embedded Coder,
Build environment
for cross-compiling,
Oscilloscope,
External mode,
Self-balancing
robot
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No./ID Non-technical title Verification of the requirement Tools

Req_08 Battery voltage

It is verified whether the implementation of the battery voltage measurement
can be done by Simulink blocks, using the codegeneration for the
Cortex-M4 core.

It is verified whether it is possible to adjust when the measurement
of the battery voltage takes place.

It is verified whether the Battery voltage value consists of the mean
of 100 values.
It is verified whether the acquisition of the battery voltage is performed
within 2 ms.

Result:

The implementation of the battery voltage measurement can be done by
Simulink blocks.

It is possible to adjust when the ADC measurement takes place.

The battery voltage is measured using the average value of 100 values.

The battery voltage is measured within 2 ms

Tests passed

STM32MP1,
Computer,
MATLAB Simulink,
Embedded Coder,
Build environment
for cross-compiling,
External mode
Self-balancing
robot

Req_09
Tuning model
parameters via
Touch display

It is verified whethe parameters can be adjusted by using graphical
sliders displayed by the touch display.

It is verified whether model parameters can be plotted in a diagram
shown by the touch display.

Result:

Model parameters can be adjusted by using graphical sliders displayed
on the touch display.

Model parameters are plotted via a diagram on the touch display.

Test passed.

STM32MP1,
Computer,
arm-none-eabi-gcc
cross-compiler,
Debug-tool,
CMake

Req_10 Real-time Control

It must be checked whether the real-time
firmware complies with the real-time
requirements.

Result:

The real-time conditions are fulfilled.

Tests passed

STM32MP1,
Computer,
MATLAB Simulink,
Embedded Coder,
Build environment
for cross-compiling,
External mode
Self-balancing
robot

Table 6.1: Verification plan
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Main measurements

Model sample time

According to Req_01, a model must be capable of operating with a sample time of
100 µs. The model shown in figure 6.1 is used to verify this. Inside the model, a
function generator generates a rectangular function. One sample of this function has
the value 1 and the next sample has the value 0. Connecting the output of this function
generator to the GPIO-Write block allows measuring the sample time of the model
using an oscilloscope. The measured periods correspond to two model steps. Table 6.2
shows which model step times have been tested and whether the test has been passed.

Figure 6.1: Step Time test

Step Time Test result

1 s passed

100 ms passed

10 ms passed

1 ms passed

100 µs passed

10 µs failed

Table 6.2: Step time test result

It is seen, that the required sample time of 100 µs can be kept, seen in figure 6.2. A
sample time of 10 µs fails. The reason for this has not been investigated, it may be due
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to slow implementation of the GPIO-Write block, or the time needed to calculate the
model step.

Figure 6.2: Model step time = 10 µs

As seen in figure 6.3, a period of 41.66 µs can also be measured. The resulting model
sample time is 20.83 µs. That is equivalent to a frequency of 48 kHz, which could
make the implementation interesting for audio processing.
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Figure 6.3: Model step time = 20.83 µs

External mode data transfer

Figure 6.4 shows a model, that is used to test the transmission of the external mode
via XCP on TCP/IP. For this purpose, a known random uint16_t array consisting
of 4096 elements is loaded into the look-up table. This test is performed with a sample
time of 1 ms, resulting in a data transfer of 2 kBs−1, which is transferred from the
Cortex-M4 via the Cortex-A7 to the development computer. After the runtime of the
external mode, the values received from the target can be compared with the values of
the known array. This can be seen in figure 6.5.
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Figure 6.4: External mode via XCP communication test
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6 Verification

Real-time control

During the verification of the real-time system on the Cortex-M4, the Cortex-A7 is
intentionally stressed, to show that the Cortex-M4 and the Cortex-A7 work indepen-
dently. For this purpose, several applications are started simultaneously on the Linux
operating system of the Cortex-A7. An snapshot of the utilization of the Cortex-A7
during the real-time verification of the Cortex-M4 is seen in figure 6.6.

Figure 6.6: Deliberate stressing of the Cortex-A7 during real-time verification of the
Cortex-M4 firmware

To verify the real-time firmware on the Cortex-M4, the idle time calculated in sec-
tion 4.2 must be kept. To observe this, a GPIO pin is set at each task start and reset
at each task end. The maximum average voltage of the GPIO pin is used to derive the
idle time. This measurement is seen in figure 6.7.
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Figure 6.7: Measuring the idle time of the Cortex-M4 (preemption enabled)

The relative idle time Tidle of the processor is calculated as seen in equation (6.1).

Tidle =
VREF −V ˆavg

VREF
(6.1)

The result is Tidle ≈ 88%. The relative core utilization is Uc ≈ 12%.

This measurement has a systematic error. This always occurs when a task with a low
priority is interrupted by a task with a higher priority. When the processor jumps back
to the task of the lower priority, the GPIO pin is not set again, so the rest of the task
processing is not covered by the measurement. To prevent this, the preemption of each
task is deactivated for the measurement. This prevents the processor from switching to
a task with a higher priority while a task is being processed. The measurement where
the preemtion is disabeld is seen in figure 6.8.
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Figure 6.8: Measuring the idle time of the Cortex-M4 (preemption disabled)

This measurement results Tidle ≈ 87% and Uc ≈ 13%. If the relative core utilization
Uc and the maximum utilization Usum, calculated in equation (4.1), are compared, it is
seen that:
Uc ≈ 0.12 < 0.712≈Usum.
This means that the real-time condition is met.
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7 Conclusion

The MATLAB Simulink coder target designed and implemented within this project
creates the possibility to perform model-based design on the Cortex-M4 of the
STM32MP1. With the implemented external mode via XCP on TCP/IP, parameters
of the real-time firmware running on the Cortex-M4 can be observed and tuned. While
the Cortex-M4 is executing the real-time firmware, a graphical application can be ex-
ecuted on the Cortex-A7, which can display and tune the parameters of the real-time
process.

With the Simulink coder target and the Simulink blocks, both developed in this project,
the example application control of the self-balancing robot can be implemented model-
based.

During the development of the Simulink blocks, the focus was on a hardware-related
and fast implementation. By using and modifying the ARM-Cortex-M interrupt block,
the hardware interrupts of the NVIC can be integrated into the Simulink model. By
using interrupts and DMAs within the real-time application, polling is avoided.

Thanks to existing drivers on the Linux OS running on the Cortex-A7, network and
graphic touch applications can be developed rapidly. Even the utilization of the Linux
processor does not affect the real-time application. The communication of the hetero-
geneous processors via the shared memory can be implemented as a communication
interface for the external mode via XCP.

The setup CMake project resolves the dependencies of the build process from the tem-
plate Makefile of MATLAB Simulink or the Makefile projet of the STM32CubeIDE.

The controller for the self-balancing robot, created by the model-based design, can
keep the self-balancing robot in its unstable resting position. The acceleration compo-
nents resulting from changes in direction, impacts, rapid acceleration, and deceleration
can be estimated by applying the Kalman filter.
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7 Conclusion

7.1 Outlook

In future projects, the communication of the heterogeneous processors can be im-
plemented via the indirect buffer exchange mode. The data acquisition of the Hall
encoders and the ultrasonic sensor could be further optimized by a DMA-based im-
plementation. Furthermore, it would be possible to optimize the control of the self-
balancing robot by implementing a linear-quadratic controller. Through model-based
development, a control for the trajectory of the self-balancing robot can now be
planned and implemented. A graphical Linux application could also be developed
to match them.
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A Appendix

A.1 Hardware Registers

The following applies to the readability and writability of the register bits:

Symbols Meaning

rw The bit can be read and written
rc_w0 The bit is set by hardware and reset by software
rs The bit is set by software and reset by hardware
w The bit can only be written

Table A.1: Symbols indicating the readability and writability of register bits

TIMx Prescaler
0123456789101112131415

PSC
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Figure A.1: Prescaler Register .cf [24, p. 2127]

PSC (Prescaler): [24]
A value is programmed into the prescaler by for dividing the incoming clock
frequency. The resulting clock frequency fCKCNT is determined as follows:

fCKCNT =
fCKPSC

PSC+1
(A.1)
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TIMx Auto-Reload Register
0123456789101112131415

ARR
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Figure A.2: Auto-Reload Register .cf [24, p. 2127]

ARR (Auto-Reload Register): [24]
The Auto-Reload value is programmed into the ARR. If the value in the ARR is
zero, the counter is frozen.

The frequency of the repeating timer period through up or downcountiong is deter-
mined by:

fPeriod =
fCKCNT

ARR+1
(A.2)

TIMx Capture/Compare Mode Register 1
16171819202122232425262728293031

OC2M OC1M

rw rw

0123456789101112131415

OC2
CE

OC2M OC2
PE

OC2
FE

CC2S OC1
CE

OC1M OC1
PE

OC1
FE

CC1S

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Figure A.3: Capture/Compare Mode Register 1 .cf [24, p. 2118]

In the register description, x is the channel number 1 or 2.

OCxCE (Output Compare x Clear Enable) [24]

0: no effects

1: clears CxREF if a High level is detected on ETRF (output of the resynchro-
nization circuit)

OCxM (Output Compare x Mode): [24]

110: set output to PWM mode 1 (upcounting)

See [24, p. 2120] for a deeper description of the PWM modes
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OCxPE (Output Compare x Preload Enable): [24]

0: disables Preload register

1: enables Preload register

OCxFE (Output Compare x Fast Enable): [24]
This bit accelerates the processing of events to the Capture/Compare output or
the trigger input.

0: Acceleration off, the minimum triggerd input delay is 5 clock cycles

1: Acceleration on, the triggerd input delay is reduced to 3 clock cycles

CCxS (Capture/Compare x Selection): [24]
Bit-field configures timer channel as input or output

00: configures Capture/Compare channel x as output

01: configures Capture/Compare channel x as external input 1

10: configures Capture/Compare channel x as external input 2

11: configures Capture/Compare channel x as internal input

TIMx Capture/Compare Register 1
0123456789101112131415

CCR1
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Figure A.4: Capture/Compare Register 1 .cf [24, p. 2128]

CCR1 (Capture/Compare Register 1): [24]
The Capture/Compare register contains the value that is to be compared with the
counter.
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TIMx Capture/Compare Enable Register
16171819202122232425262728293031

CC6P CC6E CC5P CC5E

rw rw rw rw

0123456789101112131415

CC4NP CC4P CC4E CC3NP CC3NE CC3P CC3E CC2NP CC2NE CC2P CC2E CC1NP CC1NE CC1P CC1E

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Figure A.5: Capture/Compare Enable Register .cf [24, p. 2124]

In the register description, x is a channel number between 1 and 6.

CCxP (Capture/Compare x output Polarity): [24]
If Capture/Compare x channel is set as output configuration:

0: Configures the output to active high

1: Configures the output to active low

If Capture/Compare x channel is set as input configuration:

See [24, p. 2125] for a deeper description

CCxE (Capture/Compare x output Enable): [24]
If Capture/Compare x channel is set as output configuration:

0: Switches the output off

1: Switches the output on

If Capture/Compare x channel is set as input configuration:

0: Disables capture

1: Enables capture

CCxNP (Capture/Compare x complementary output Polarity): [24]
If Capture/Compare x channel is set as output configuration:

0: Configures the complementary output polarity to active high

1: Configures the complementary output polarity to active low

If Capture/Compare x channel is set as input configuration:

See [24, p. 2125] for a deeper description

CCxNE (Capture/Compare x complementary output Enable): [24]

0: Disables complementary output

1: Enables complementary output
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TIMx Control Register 1
0123456789101112131415

UIFRE
MAP

CKD ARPE CMS DIR OPM URS UDIS CEN

rw rw rw rw rw rw rw rw rw rw rw

Figure A.6: TIMx Control Register 1 .cf [24, p. 2106]

UIFREMAP (UIF status bit Remapping): [24]

0: Update interrupt flag is not copied into the Timer Counter register bit UIF
(Update interrupt flag copy)

1: Update interrupt flag is copied into the Timer Counter register bit UIF

CKD (Clock division): [24] By the bit field CKD a divison ratio can be determined,
which is used between dead time and sampling clock by the dead time generators
and the digital filters. To get more information about the divison ratio see [24,
p. 2106].

ARPE (Auto-reload preload enable): [24]

0: ARR register is configured as not buffered

1: ARR register is configured as buffered

CMS (Center-aligned mode selection): [24]
For the selection of center-aligned modes, see [24, p. 2106].

DIR (Direction): [24]
DIR bit only used in Center-aligned configuration.

0: Upcounting usage of counter

1: Downcounting usage of counter

OPM (One pulse mode): [24]

0: Continuous counting at update event

1: Stop counting at update event

URS (Update request source): [24]
The USR bit selects the update event source. Events:

0: Counter overflow/underflow, setting the update generation bit and generation
of updates by the slave mode controller.

1: Counter overflow/underflow and DMA request.

UDIS (Update disable): [24]
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The UDIS bit is cleaned by the software to enable update events. Update events
can be generated by counter overflow/underflow, setting the UG bit and update
generation by the slave mode controller.

0: Update event enabled

1: Update event disabled

CEN (Counter enable): [24]

0: Disables counter

1: Enables counter

TIMx DMA/Interrupt Enable Register
0123456789101112131415

TDE COMDE CC4DE CC3DE CC2DE CC1DE UDE BIE TIE COMIE CC4IE CC3ID CC2IE CC1IE UIE

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Figure A.7: TIMx DMA/Interrupt Enable Register .cf [24, p. 2112]

In the register description, x is a channel number between 1 and 4.

TDE (Trigger DMA request Enable) [24]

0: Disables trigger DMA request

1: Enables trigger DMA request

COMDE (COM DMA request Enable) [24]

0: Disables COM DMA request

1: Enables COM DMA request

CCxDE (Capture/Compare x DMA request Enable) [24]

0: Disables Capture/Compare x DMA request

1: Enables Capture/Compare x DMA request

UDE (Update DMA request Enable) [24]

0: Disables update DMA request

1: Enables update DMA request

BIE (Break Interrupt Enable) [24]

0: Disables break interrupt

1: Enables break interrupt

TIE (Trigger Interrupt Enable) [24]
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0: Disables trigger interrupt

1: Enables trigger interrupt

COMIE (COM Interrupt Enable) [24]

0: Disables COM interrupt

1: Enables COM interrupt

CCxIE (Capture/Compare x Interrupt Enable) [24]

0: Disables Capture/Compare x interrupt

1: Enables Capture/Compare x interrupt

UIE (Update interrupt enable) [24]

0: Disables Update interrupt

1: Enables Update interrupt

TIMx Status Register
16171819202122232425262728293031

CC6IF CC5IF

rc_w0 rc_w0

0123456789101112131415

SBIF CC4OF CC3OF CC2OF CC1OF B2IF BIF TIF COMIF CC4IF CC3IF CC2IF CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Figure A.8: Capture/Compare Mode Register 1 .cf [24, p. 2114]

CCxIF (Compare x interrupt flag) [24]

If Capture/Compare x channel is set as output configuration:

0: Counter TIMx_CNT and register TIMx_CCR1 do not have the same value.

1: The counter TIMx_CNT has the same value as the register TIMx_CCR1.

If Capture/Compare x channel is set as input configuration:

0: Input capture not occurred

1: The counter value at the moment of the capture input has been written to
register TIMx_CCR1

SBIF (System Break interrupt flag) [24]
It is required to reset the bit before the PWM can be restarted.
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0: No system break interrupt pending

1: Break interrupt occurrences if the system break line detected a high level. If
the BIE bit of register TIMx_DIER is set, an interrupt is generated.

CCxOF (Capture/Compare x overcapture flag) [24]

0: Overcapture not detected.

1: While the CCxIF bit was set, a counter value has been stored in the
TIMx_CCR1 register.

B2IF (Break 2 interrupt flag) [24]

0: No break interrupt pending

1: Break interrupt occurrences if teh break line 2 detected a high level. If the
BIE bit of register TIMx_DIER is set, an interrupt is generated.

BIF (Break interrupt flag) [24]

0: No break interrupt pending

1: Break interrupt occurrences if the break line 1 detected a high level. If the
BIE bit of register TIMx_DIER is set, an interrupt is generated.

TIF ( Trigger interrupt flag) [24]

0: No trigger interrupt pending

1: Trigger interrupt has occurred

COMIF (COM interrupt flag) [24]

0: No COM interrupt pending

1: COM interrupt has occurred

UIF (Update interrupt flag) [24]

0: No update interrupt pending

1: Update interrupt has occurred
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DMA stream x configuration register
16171819202122232425262728293031

MBURST PBURST CT DBM PL

rw rw rw rw rw

0123456789101112131415

PINCOS MSIZE PSIZE MINC PINC CIRC DIR PFCTRL TCIE HTIE TEIE DMEIE EN

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Figure A.9: DMA stream x configuration register .cf [24, p. 1211]

PL (Priority Level) [24]

The higher the bit value of the bit field, the higher is the priority

MSIZE (Memory data SIZE) [24]

00: 8 bit

01: 16 bit

10: 32 bit

11: reserve

PSIZE (Peripheral data SIZE) [24]

00: 8 bit

01: 16 bit

10: 32 bit

11: reserve

MINC (Memory INCrement mode) [24]

0: fixed memory pointer adress

1: memory pointer adress is incremented after each data transfer

PINC (Peripheral INCrement mode) [24]

0: fixed memory pointer adress

1: memory pointer adress is incremented after each data transfer

CIRC (CIRCular mode) [24]

0: none circular mode

1: circular mode

DIR (data transfer DIRection) [24]

00: peripheral-to-memory
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01: memory-to-peripheral

10: memory-to-memory

11: reserved

PFCTRL (Peripheral Flow ConTRoLler) [24]

0: DMA controlles the flow

1: Peripheral controlls the flow

TCIE: (Transfer Complete Interrupt Enable) [24]

0: Transfer complete interrupt disabled

1: Transfer complete interrupt enabled

TEIE: (Transfer Error Interrupt Enable) [24]

0: Transfer error interrupt disabled

1: Transfer error interrupt enabled

EN (stream ENable) [24]

0: stream disabled

1: stream enabled

DMA stream x memory 0 address register
16171819202122232425262728293031

M0A

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

0123456789101112131415

M0A

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Figure A.10: DMA stream x memory 0 address register .cf [24, p. 1215]

M0A (Memory 0 Address) [24]

Base address of the memory area 0 from or to data is read or written.
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DMA stream x peripheral address register
16171819202122232425262728293031

PAR

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

0123456789101112131415

PAR

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Figure A.11: DMA stream x peripheral address register .cf [24, p. 1215]

PAR (Peripheral AddRess) [24]

Base address of the Peripheral data register from or to data is read or written.

DMA stream x number of data register
16171819202122232425262728293031

0123456789101112131415

NDT

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Figure A.12: DMA stream x number of data register .cf [24, p. 1214]

NDT (Number of Data items to Transfer) [24]

numbers can be between 0 up to 65535
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DMAMUX request line multiplexer channel x configuration register
16171819202122232425262728293031

SYNC_ID NBREQ SPOL SE

rw rw rw rw rw rw rw rw rw rw rw

0123456789101112131415

EGE SOIE DMAREQ_ID

rw rw rw rw rw rw rw rw rw

Figure A.13: DMAMUX request line multiplexer channel x configuration register
.cf [24, p. 1236]

DMAREQ_ID (DMA REQuest IDentification) [24]

To select the input DMA request

DMA low interrupt status register
16171819202122232425262728293031

TCIF3 HTIF3 TEIF3 DMEIF3 FEIF3 TCIF2 HTIF2 TEIF2 DMEIF2 FEIF2

r r r r r r r r r r

0123456789101112131415

TCIF1 HTIF1 TEIF1 DMEIF1 FEIF1 TCIF0 HTIF0 TEIF0 DMEIF0 FEIF0

r r r r r r r r r r

Figure A.14: DMA low interrupt status register .cf [24, p. 1210]

TCIF (Stream x Transfer Complete Interrupt Flag) [24]

0: none conplet transfer event detected

1: conplet transfer event detected

TEIF (Stream x Transfer Error Interrupt Flag) [24]

0: none error event detected

1: error event detected
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DMA low interrupt flag clear register
16171819202122232425262728293031

CTCIF3 CHTIF3 CTEIF3 CDMEIF3 CFEIF3 CTCIF2 CHTIF2 CTEIF2 CDMEIF2 CFEIF2

w w w w w w w w w w

0123456789101112131415

CTCIF1 CHTIF1 CTEIF1 CDMEIF1 CFEIF1 CTCIF0 CHTIF0 CTEIF0 CDMEIF0 CFEIF0

w w w w w w w w w w

Figure A.15: DMA low interrupt flag clear register .cf [24, p. 1210]

CTCIF (Stream x Clear Transfer Complete Interrupt Flag) [24]

1: cleans the transfer complete interrupt flag

CTEIF (Stream x clear Transfer Error Interrupt Flag) [24]

1: cleans the error interrupt flag

SPI configuration register 1
16171819202122232425262728293031

MBR CRC CRC SIZE

rw rw rw rw rw rw rw rw rw

0123456789101112131415

TX
DMA
EN

RX
DMA
EN

UDRDET UDRCFG FTHLV DSIZE

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Figure A.16: SPI configuration register 1 .cf [24, p. 2752]

TXDMAEN (TX DMA stream ENable) [24]

0: disables Tx DMA

1: enables Tx DMA

RXDMAEN (RX DMA stream ENable) [24]

0: disables Rx DMA

1: enables Rx DMA
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SPI configuration register 2
16171819202122232425262728293031

AF
CNTR

SSOM SSOE SSIOP SSM CPOL CPHA LSB
FRST

MAS
TER

SP COMM

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

0123456789101112131415

IOSWP MIDI MSSI

rw rw rw rw rw rw rw rw rw

Figure A.17: SPI configuration register 2 .cf [24, p. 2755]

AFCNTR: (Alternate Function GPIOs CoNTRol) [24]

0: peripheral has no control to the GPIOs

1: peripheral has control to the GPIOs

SPI/I2S control register 1
16171819202122232425262728293031

IO
LOCK

rs

0123456789101112131415

TCRC
INI

RCRC
INI

CRC33
_17

SSI HDDIR CSUSP C
START

MAS
RX

SPE

rw rw rw rw rw w rs rw rw

Figure A.18: SPI/I2S control register 1 .cf [24, p. 2750]

CSTART (master transfer START) [24]

0: master transfer is in idle state

1: master transfer is temporary suspended or running

SPE (Serial Peripheral Enable) [24]

0: disables Serial Peripheral

1: enables Serial Peripheral
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GPIO port input data register
16171819202122232425262728293031

0123456789101112131415

IDR15 IDR14 IDR13 IDR12 IDR11 IDR10 IDR9 IDR8 IDR7 IDR6 IDR5 IDR4 IDR3 IDR2 IDR1 IDR0

r r r r r r r r r r r r r r r r

Figure A.19: GPIO port input data register .cf [24, p. 1078]

IDR (Port x input data I/O pin) [24]

It contain the input value of the corresponding pin

A.2 STM32CubeMX Configurations note

The STM32CubeMX configuration for the IPCC is shown in figure A.20.

Figure A.20: STM32CubeMX configuration of the IPCC
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The STM32CubeMX configuration for the OpenAMP Framework is shown in fig-
ure A.21.

Figure A.21: STM32CubeMX configuration of the OpenAMP Framework

A.3 Attached Data

1 Software requirements specification

2 MATLAB Simulink target, model, and block library Smart_RCP
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