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1 Introduction

MultiProcessor System-on-Chip (MPSoC) are used more and more frequently in sec-
tors of industry, signal processing, and embedded systems due to their multiple usabil-

ities and increasing performance. [1]

Heterogeneous processor architectures offer promising opportunities in current and
future safety-critical innovations where real-time [2] is required. [3]
Heterogeneous MPSoC platforms offer the possibility to execute different tasks with

mixed criticalities in one MPSoC simultaneously. [4]

The implementation of a heterogeneous MPSoC in a cyber-physical system opens the

possibility to distribute its tasks between different independent computing cores. [3]

In this master thesis, the software for a heterogeneous MPSoC is designed and imple-
mented, which performs real-time bound tasks on a real-time capable core, while a
non-real-time capable core performs tasks that require an Operating System (OS). The
control of an inverted pendulum represents the tasks, that are executed on the real-time
capable core. The execution of a graphical application and network services represent

the tasks performed by the core running an OS.

The main focus lays on the design and implementation of real-time capable software
components using model-based design. In the preceding bachelor thesis [5], the fea-
sibility of implementing software on the separate computing cores of the STM32MP1
MPSoC has been demonstrated. A previous development project [6] adapted an exist-
ing model-based software development tool designed for microcontrollers [7], based
on MATLAB Simulink [8], to the real-time capable core of the MPSoC.



1 Introduction

1.1 Objectives

The objective of this work is to develop real-time capable software for the hetero-
geneous multiprocessor platform STM32MP1. It is required, that the software for the
real-time capable core of the platform is developed by model-based design using MAT-
LAB Simulink, see item A.1.1. Other objectives are partial platform support required
for the model-based implementation and the use of the real-time capable core as a pro-
cessor in the loop with the external mode via Universal Measurement and Calibration
Protocol (XCP). The XCP messages have to be forwarded via the core running the OS
to enable a Transmission Control Protocol/Internet Protocol (TCP/IP) connection to
the development computer. The heterogeneous platform is implemented in the inverted
pendulum to demonstrate that the real-time capable core of the platform can meet the
real-time critical boundaries. Figure 1.1 shows the implementation of the STM32MP1
in the inverted pendulum, which is called self-balancing robot in the further course of
the thesis.

Figure 1.1: Self-balancing robot controlled by the STM32MP1



2 Foundations/Theory

This chapter explains definitions and terms that should help to understand the project.
Readers who are familiar with the topics heterogeneous multiprocessors, code genera-

tion by Simulink, and scheduling can read on at chapter 3.

2.1 Heterogeneous multiprocessor platforms

Typically, MPSoCs have multiple sets of identical cores, called clusters, and can have
programmable logic tiles, such as Graphics Processing Unit (GPU)s or Neural Process-
ing Unit (NPU)s. Typical MPSoCs have a hypervisor, that allows the operating system
to perform global scheduling of tasks. Heterogeneous MPSoCs have several different
cores that have different Instruction Set Architecture (ISA)s. Due to the different ISAs,
it is not possible to perform global scheduling by a hypervisor. Commonly, cores of
heterogeneous MPSoCs execute different operating systems. The different ISAs re-

quire a separate compilation of the code to be executed by the heterogeneous cores. [3]

2.2 Introducing the STM32MP157C-DK2

The STM32MP157C-DK2 MPSoC from STMicroelectronics [9] consists of an Arm-
based dual Cortex-A7 multicore cluster clocked at 650 MHz. This multicore cluster
is abbreviated by Cortex-A7 in the following. The Cortex-A7 has a Memory Man-
agement Unit (MMU), which enables memory virtualization. A multi-purpose Linux
operating system can be hosted on the Cortex-A7. [10]

The second core of the STM32MP157C-DK2 MPSoC is a single Arm-based Cortex-
M4 processor, which is clocked at 209 MHz. This core is abbreviated by Cortex-
M4 in the following. The Cortex-M4 is a MMU-less core [11], and can only handle
lightweight operating systems such as FreeRTOS [12] or Micrium’s RTOS [13]. [10]
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The Cortex-A7 and Cortex-M4 operate independently but share peripherals such as
General Purpose Input/Output (GPIO)s, Inter-Processor Communication Controller
(IPCC), Static Random Access Memory (SRAM) and Hardware Semaphore (HSEM).
Peripherals like Serial Peripheral Interface (SPI), Analog Digital Converter (ADC)s,
Timers, or Direct Memory Access (DMA)s must be assigned to one of the processor

cores. [14]

2.3 Application Mapping and Scheduling Problems

Mapping is a configuration and simplification method that includes all the way to im-
plementation. Various analysis methods for the exploration of the design space for
performance can be mapped considering system platform Application Programming

Interface (API) descriptions of the services contained on the platform. [15]

A crucial design step is the mapping of applications to the available hardware plat-
forms. This involves mapping the applications to execution times and processors. If as
many scheduling decisions as possible are made in the design period, it is possible to
provide a time constraint guarantee. The selection of the scheduling algorithm is about

using a system with a combination of specific applications. [16]

In the application planned in this thesis, it is expected that the robot, while communi-
cating with the host computer, will continue to read the data from the accelerometer

and gyro sensor to calculate how to control the motor to maintain the balance.

Many modern embedded and cyber-physical systems are built on existing hardware
platforms because the goal is to find the right combination of hardware and software
to create a product that meets all specifications as efficiently as possible. This design
method is called hardware/software codesign. A system built on a hardware platform
is not designed through a synthesis process derived from the behavioral specification.
Another reason for the limitations that lead to the reuse of hardware, as well as software
is the increasing complexity and stringent requirements in time-to-market. The use of

existing hardware platforms leads to the term platform-based design. [16]

In this context, a platform is described as a family of architectures that fulfill con-
straints to enable the reuse of hardware and software components. Thereby platforms

represent abstraction layers to cover simplification in low levels. The use of the general
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reuse technology has the goal of reducing development costs and times. The combina-

tion of hardware and software platforms leads to the systemplatform approach. [15]

When mapping applications to execution platforms by using platform-based design,
there are also different design options. For example, a decision can be made between
variants of a platform with different speeds or a different number of processors, or

different communication architecture. [16]

The mapping problem is defined as follows [17]:
Given:
* a number of applications
* application use-cases
* a number of available architectures
Find:
* the applications are mapped to the processors
* selection of an appropriate scheduling technique (if not defined)
* selection of a target architecture (if not defined)
Objectives:
* deadline compliance and/or performance maximization
* cost and energy consumption minimization and perhaps other objectives
To be able to deal with the scheduling problem in more detail, some symbols and
definitions have to be explained previously. In this thesis, the following definitions are
taken from [16]:

Definitions:

* Every task 7; execution is called a job J. This implies that for a task 7; there is
an associated set of jobs J(7;). The set of jobs of a task may not be finite due to
the possibility of repetitions.

* Tasks are called periodic if they are released once in a time unit 7;, where 7; is
the period of the task.

* If there is a lower bound on the length of the interval between adjacent releases
of a task, the task is called sporadic, where the interval length is also referred to
as T;.

» Aperiodic tasks are tasks that are not periodic and not sporadic. In task systems

consisting only of periodic and sporadic tasks, the concept of hyper-periods can
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simplify scheduling considerably. In this case, the interval length is also referred
to as 7;.
» The hyper-period of a periodic or sporadic task system 7 is defined as the least

common multiple of the periods of the individual tasks.
Symbols[16]:

» asetof tasks 7= {11, -+, T}

* asetof jobs J = {J;}

* the release time r; of J; (at the time the execution becomes available)

* the Worst-Case Execution Time (WCET) C;

* the absolute deadline d; related to J;

* the relative deadline D;, the time between the availability of a job J; to the time
when the job must be finished (D; = d; —r;)

* the laxity or slack /;. In the case that [; = 0, J; is started immediately after the
release [; = D; — C;

* the actual start time s; related to J;

* the actual end time f; related to J;

Entirely Time Triggered (TT) systems

Entirely TT systems are systems in which a dispatcher processes a Task Descriptor
List (TDL) planned during the design process. The task of the dispatcher is to process
the TDL. The dispatcher does not make any decisions himself. In such systems, the

dispatcher can be controlled by a timer. [16]

In entirely TT systems, a temporal control structure for all tasks is defined in a plan-
ning process. The scheduling that takes place in prior time, which takes into account
the required priority and completion times between the tasks, eliminates the need for
explicit coordination by an operating system at runtime. [2]

In hard real-time systems, predictability, by satisfying timing constraints on system
behavior, is the most important concern. To ensure predictability in a complex system,
pre-run-time scheduling is often the only practical option. [18]

The main disadvantage of TT systems is that this response to events can be quite
poor. [16]

In this thesis, the scheduling of periodic and aperiodic tasks on a Cortex-M4 has to
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be planned. Since all tasks are enabled by interrupts, it is not possible to use schedul-
ing methods that require a dynamic priority assignment. Therefore, scheduling meth-
ods with dynamic priority assignments such as the Earliest Deadline First (EDF) [16]
algorithm or the Least Laxity (LL) [16] algorithm are not considered here. Hence,

scheduling algorithms based on static priority assignments are considered here.

Earliest Due Date (EDD) Algorithm

If a situation is considered where all jobs arrive at the same time, and the lateness
is to be minimized, preemption of the jobs becomes unnecessary. In this situation,
a rule established by Jackson in 1955 states that given a set of independent jobs with
deadlines, any algorithm that executes the jobs in the order of nondecreasing deadlines,
operates optionally to minimize the maximum lateness. Such an algorithm is called
an EDD. Such algorithms can be statically scheduled if the deadlines are known in

advance. The complexity of the EDD algorithm is &'(nlogn). [19]

Scheduling Without Preemption

Scheduling algorithms without preemption require processor idle times to complete
jobs with earlier deadlines that arrive at a later time. Such are called clairvoyants be-
cause they require knowledge about the future. An algorithm that keeps the processor

idle even though it has jobs available is not called work conserving. [16]

Scheduling with Precedence Constraints

Priority rules can be mapped by Directed Acyclic Graphs (DAG)s G. The following
applies [16]:

* G=(1,E)
e FCTXT
» E:=edges

e T := vertices (or nodes)

Figure 2.1 shows such a DAG. The vertex of an instance represents a task, and the

edges correspond to the dependencies of the task. In multiprocessor systems, a DAG
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can also be used to separate tasks into subtasks and to distribute them to different

processors. Then, the vertices would correspond to the individual subtasks. [16]

4 i)ee

Figure 2.1: DAG example (cf. [16, p. 310])

The example in Figure 2.1 shows 7 tasks. The tasks are each assigned to a node. The

edges express the order in which the tasks must be processed.

Latest Deadline First (LDF) Algorithm

In the case of simultaneous arrival times of dependent jobs, the LDF algorithm can
lead to an optimal minimization of the maximum delay. The LDF starts listing the
tasks with the largest dead time into a queue. In doing so, the LDF starts in the DAG
at the bottom row with the tasks that do not have a successor. During runtime, this
queue is processed from back to front. If the jobs occur asynchronously, a modified
LDF algorithm can be selected. [16]

In the development of periodic scheduling algorithms, there are different goals than
for aperiodic scheduling algorithms. Finding the minimum total length of a schedule,
for example, is not an issue when dealing with tasks with infinite repetition. Periodic
schedulers are considered optimal when they find a feasible schedule if one exists. For
periodic, as well as sporadic task systems, a task utilization u; can be defined according
to [16, p. 312]:
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(0
) 2.1
uz—Ti (2.1)

Even for periodic tasks, 7; is the period and for sporadic tasks, 7; is the minimum
separation of tasks, the task systems are treated with the same definition of task uti-
lization. [16]

According to [16, p. 312], the maximum utilization U,,,, and the total utilization U,

for task systems T = {7y, -, 7,} are defined as follows:
Upax = max(u;) (2.2a)
Usum = Zui (2.2b)
i

Rate Monotonic (RM) Scheduling

Probably the best-known scheduling algorithm for independent periodic tasks is Rate

Monotonic Scheduling. [16] It requires the following RM assumptions [20, p. 2]:

 All tasks that require hard deadlines occur periodically and have a constant in-
terval between their occurrence

* All deadlines must be run-time constraints (each task must complete before it
can be invoked again)

 All tasks are independent of each other (the invocation of one task is not related
to the initialization or processing of another task)

* The runtime of each task is constant and does not change over time

» Non-periodic tasks in the system are special. They are used for initialization or

troubleshooting and do not have hard real-time constraints themselves.

Another assumption made for this type of schedule is that the context switching is
negligible. In mathematical notation, the assumptions are that D; = T; and that C; is
constant and known for each task.

According to [20, p. 5-6] it follows that for a single processor and n tasks the accumu-

lated utilization Uy, is not allowed to be exceeded:
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n(2'/m—1) (2.3)

Hlﬁ

This leads to a maximum Uy, value of 0.7 for large n according to [20, p. 8]:

lim n(2'/" — 1) =log,(2) =In(2) ~ 0.7 (2.4)
n—oo
In the case of monotonic scheduling, the priorities of tasks are a monotonically de-
creasing function of the period. This means that tasks with short periods are given
high priority, and tasks with long periods are given low priority. The RM scheduling
strategy works through fixed preemptive priorities. [16]

Figure 2.2 shows an example of RM scheduling for 6 periodic tasks. The tasks are
numbered from 7j to 74. The double arrows in the respective task timeline symbolize
the arrival time of a task and the deadline of the previous task. The tasks are sorted
by the duration of the period. Task 7; has the shortest period and is therefore assigned
the highest priority. Task 7¢ has the longest period and is therefore assigned the lowest
priority. In Table 2.1, the worst-case execution time C;, the period duration 7;, and the

task utilization u; are shown for the individual tasks.

NS S S SR SN SR SHN SR SR ;
4 ¢ ¢ ; ; ¢
.4 4 4, 4 ;

K - i

4 L

ot R A e

Figure 2.2: Example of a schedule generated using an RM scheduler

10
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Ci =G/ T
025 1 250 m
025 | 2 125 m
0.05]22| 227m

06 | 4 150 m
005| 6 8.33m

1.2 17 157 m
Table 2.1: Example RM scheduling task table

~.

QNN B W[N] — =

Verification can then be made to see if the accumulated utilization Uy, is less than
6(2!/6—1).

|

'~ 0713 <6(26—1)~0.734 (2.5)

n
Usum = Z
i=1

Pﬂ

1

As visible in equation (2.5), Uy, is less than 6(21/ 6 _1). This means that enough idle

time is available to guarantee schedulability for RM scheduling in this example.

Deadline Monotonic (DM) Scheduling

For tasks, whose deadline does not match the period duration, an extended RM
scheduling can be applied, which is called DM. DM scheduling can handle tasks with
explicit deadlines. Like RM, DM is based on static task priority. This is determined
by considering the relative deadline D;. If D; < D', task 7; is assigned the higher pri-
ority. For tasks that have explicit deadlines, equation (2.3) can be transformed into
equation (2.6). [16]

Usum = Zn: . < n(zl/n - 1) (2.6)

11
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Scheduling periodic tasks with precedence constraints

Scheduling interdependent tasks is more complex than scheduling tasks that are per-
formed independently. There are ways to reduce the scheduling effort [16]:
* Adding extra resources to simplify scheduling.
* Splitting tasks into dynamic and static, to make as many decisions as possible in
the design process and minimize the number of decisions that need to be made

dynamically at runtime.

Scheduling sporadic events

Events that occur sporadically can be associated with interrupts. If the priority of the
interrupts is higher than the system priority, the sporadic events are processed when
they occur. Such interventions in the scheduling lead to an unpredictable timing behav-
ior for all periodic tasks. To prevent this, special sporadic task servers are used. These
sporadic task servers periodically check whether sporadic tasks are ready. Sporadic
task servers can be used to convert sporadic tasks into periodic tasks. This improves

the predictability of the entire system. [16]

2.4 Concurrency on embedded hardware

Concurrency is ubiquitous in PC application development. Multithreading or process-
ing is used to create concurrent control flows. In the development of embedded soft-

ware, further forms of concurrency can be classified. [21]

Action that is driven by the program logic.

An application that consists of action traditionally has one entry point (main).

Concurrent architectures can have multiple entry points, called tasks. [21]
External events (mainly triggered by peripheral hardware).

Such events are called interrupts. Interrupts are often executed with an increased

security level and possibly in a different context than application code. [21]
Interrupts initiated by a task (mixed form of the first two items).

This form of interrupt is called “trap” or “software interrupt”. [21]
Independent hardware actions.

An example of a stand-alone hardware thread is the DMA-controlled filling of

12
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an input buffer of a peripheral interface. [21]

Even with the three most important data transfer mechanisms of computer Input/Out-
put (I/O) devices, two can be classified as concurrent. These data transfer mechanisms
are polling, interrupts, and DMA. [22]

Polling does not belong to the concurrent procedures. [21]

But it should be explained here to emphasize one advantage of interrupts, and DMA.

Polling
Polling is the process of the processor capturing incoming data. This is usually
performed by a capture subroutine that is called in a holding loop. [22]
Polling occurs periodically and actively by the processor. [21]

Interrupts
Interrupts are interrupting the execution of the main program to store data into
a buffer. This data can be called or processed later by the main program. Back-
ground data acquisition can be realized by interrupts. Thereby the main program
remains free from data polling routines. [22]

DMA
DMA reads data from a device independently of the processor and writes it to
a system buffer. This data can be accessed or processed by the processor at a
subsequent point in time. The DMA process runs completely independently of

the processor and does not interrupt the processor.[22]

The polling strategy processes data by consuming unnecessary Central Processing Unit
(CPU) cycles on average with a 50 % delay compared to the processing by an interrupt-

based strategy. [21]
The embedded interrupt controller used in this thesis is described in section 2.5.

The strategy of implementing a DMA brings a further increase in data transfer speed
compared to the interrupt strategy since a special piece of hardware is responsible
for the data transfer. In the ideal case, the processor does not have to execute any

instructions to transfer data. [22]

The theory on the DMA can be found in section 2.6.

13
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2.5 Nested Vectored Interrupt Controllers

This chapter only covers the Nested Vectored Interrupt Controllers (NVIC) of Coretex-

M4 processors.

The NVIC is an embedded interrupt controller. [21]
Figure 2.3 shows the NVIC in the Cortex-M4 implementation.

Figure 1. STM32 Cortex-M4 implementation

Cortex-M4
ortex PU
processor
Processor
NP Embedded
— NVI
core Trace Macrocell
Debug Memory S(?rlal
access . . wire
protection unit )
port viewer
Flash Data
patch watchpoints
Bus matrix
Code SRAM and
interface peripheral interface

Figure 2.3: NVIC highlighted in the STM32 Cortex-M4 implementation

The maximum number of interrupts within an NVIC is 256, whereby the first 16 Inter-
rupts are reserved for the processor core. All interrupts greater than 15 are defined by
the processor manufacturer. This leaves a maximum of 240 interrupts defined by the

processor manufacturer. The interrupts are stored in a vectored table. [21]

The NVIC allows assigning interrupts to a priority level. This priority level ranges
from 0 to 255 for a Cortex-M4 processor. 0 is the highest priority and 255 is the
lowest. [21, 23]

14
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The implementation of the Cortex-M4 in the STM32MP157 allows only 16 pro-
grammable priority levels (4 bit). [24]

The NVIC supports a group priority mechanism to improve the priority control of the
system. The group priority mechanism divides the interrupt priority register into two
fields. The group priority and the sub-priority within a group. A higher group priority
allows the handler to get ahead. Within a group, the sub-priority decides the order of
processing. If several interrupts with the same group priority and the same subpriority
are pending, the interrupt with the lowest interrupt number is processed first. This
feature allows interrupts to be nested. [23]

The NVIC supports “tail chaining” and “late arrivals”. [21]

Tail chaining
If during the processing of an interrupt another interrupt with low priority is
pending, the program does not return to the program flow after the processing
of the interrupt, instead, the second interrupt is called. The program returns to
the interrupted program sequence only after the interrupt chain has been pro-
cessed.[21]

Late arrivals
If during the preparation for the handling of an interrupt (saving the registers on
the stack) an interrupt with a higher priority occurs, the processor will handle the
higher priority interrupt first and then proceed with the tail chaining. This saves

a stacking sequence. [21]

In the following example, an NVIC has 4 group priority levels and 4 sub-priority lev-
els. Four interrupts have been configured for the example. The interrupt priorities are
configured according to the scheme {group priority, sub priority}.

* Interrupt 1 {3, 0}

 Interrupt 2 {1, 0}

 Interrupt 3 {1, 1}

* Interrupt 4 {1, 2}
The Interrupt Request (IRQ)s occur in a temporally separated manner as shown in

Figure 2.4. Each interrupt results in an Interrupt Service Routine (ISR).
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Figure 2.4: Timed processing of interrupts of different priorities

In the beginning, IRQ2 occurs during the processing of the main. While ISR2 is exe-
cuted, IRQ4 occurs first and then IRQ3. IRQ3 and IRQ4 have the same group priority.
But IRQ3 has the lower sub priority. For this reason, ISR3 is executed first and after-
ward ISR4. After ISR4 is executed the main is executed further. In the second half,
IRQ1 occurs. ISR1 starts but is interrupted after a while by IRQ2, the reason being that
IRQ2 has a higher group priority. After ISR2 has been processed, the program returns
to ISR1. When ISR1 is finished, the program returns to the main.

2.6 Direct Memory Access

DMA refers to data access that has to take place directly between the storage device
and the main memory. [22]

The DMA controllers are devices that perform data transfers on behalf of the CPU.
The DMA controller can write data directly from an I/O device to a memory, or write
data directly from a memory to an I/O device or transfer data directly from memory to
another memory. [22]

The DMA controller typically manages multiple DMA channels that can be individ-
ually programmed. By activating a hardware DMA request signal, I/O peripherals
used for data acquisition can usually signal the DMA controller that data needs to be
read or written. Each channel’s hardware DMA request signal is passed to the DMA
controller, which monitors and handles this signal like how a processor monitors and

handles an interrupt. The DMA controller’s response to a DMA request is to perform
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one or more data transfers. To enable the DMA controller’s data transfer, the processor
must enable the DMA channels. [22]

DMA controller is operating exactly like the CPU on the system memory and the
I/O bus. The DMA controller operates as bus master as well as a bus slave. If the
DMA controller operates as bus master, the DMA controller takes over the system bus
(control, address, and data lines) from the CPU to transfer the data. [22]

The block diagram of the DMA controller of the STM32MP157 board is shown in
Figure 2.5.

Figure 130. DMA block diagram
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Figure 2.5: Block diagram showing the DMA controller of the STM32MP157
board [24, p. 1193]

The DMA controller implemented in the STM32MP157 executes the direct data trans-
fer as master via the Advanced High-performance Bus (AHB). It is possible to program

the channels for the following transactions:

* Memory to peripheral
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* Peripheral to memory

* Memory to memory

The DMA controller has an AHB master port for accessing the memory, and another
AHB master port for accessing the peripherals. To enable the DMA controller to per-
form memory to memory transmissions, the peripheral port also has access to the mem-

ory. The DMA controller is programmed via the AHB slave port. [24]

2.7 Serial Peripheral Interface

This section describes the SPI. SPI is a master-slave based serial communication pro-
tocol, with a data rate between 2 and 25 Mbps. SPI is generally used for communi-
cation between connections of devices on the same Printed Circuit Board (PCB). SPI
classically uses 4 lines for communication. These communication lines are the clock,
data input, data output, and slave select lines. For SPI connections, three frame for-
mats are state of the art. These three frame formats are called Motorola SPI, National

Semiconductor Microwire, and Texas Instruments Synchronous Serial Interface. [23]
SPI was first created by Motorola. [25]
Then Texas Instruments and National Semiconductor created their frame formats. [26]

Since master and slave each have a data line for sending and receiving, it is possible
to create a parallel-serial data transfer. The SPI master sets the clock via clock line. If
the master generates the slave select signal, the master sends one bit on the data output
line and receives one bit on the data input line at each clock period. This leads to a

full-duplex communication between master and slave. [23]

Master Slave

CPUDMA _{ oD ATT> SPIBUF > CPY/DMA
Write Read
CPUDMA —{>(SPIBUE T« SPIDATIH> oA
SPICLK JTULILL b ge

Figure 2.6: SPI routing
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2.8 Universal Measurement Protocol

If a parameterization, as well as the simultaneous logging of measurement signals has
to be done at runtime of a system, on an Electronic Control Unit (ECU), a rapid pro-
totyping platform, or a Dynamic Link Library (DLL) on a Personal Computer (PC), a
physical connection of the system to a development tool is required. Such a physical
connection can be the XCP. The “X” of the abbreviation XCP stands for the exchange-
ability of the transport layer. [27]

The XCP is standardized by the ASAM MCD-1 XCP standard. [28] The Association
for Standardization of Automation and Measuring Systems (ASAM) is an association
of more than 350 companies in the automotive sector, and has set themselves the task

of testing and standardizing toolchains in the automotive industry. [29]

The main objectives in the development of XCP have been a reduction of CPU load,
Random-Access Memory (RAM) consumption and flash memory consumption on the
XCP slave, as well as a maximization of the data transmission rate on the transport bus.
XCP operates using memory type-specific access to read and write data. The standard
defines access to parameters and measured variables by memory addresses. The access
and interpretation of the data is described by the A2L file. [28]

The A2L file is ASCII readable, it defines interface-specific measurement and calibra-

tion parameters, as well as storage schemes, events, and conversion rules. [27]

This avoids the need for a hardcoded data access implementation on the ECU. Cali-

bration and measurement data are stored in a generic XCP stack. [28]

The ECU receives memory access requests from the calibration system at runtime. The
ECU responds to these memory access requests. This type of memory access allows
different calibration and measurement tasks to be performed by different configura-
tions of the calibration system without having to modify and recompile the code of the
ECU. The XCP contains transport layer definitions for Ethernet (UDP/IP and TCP/IP),
USB, FlexRay, CAN, and serial connections (SPI and SCI). [28]

The XCP is a packet-based master-slave principle. The calibration system is the host
and the ECU is the slave. A slave can only communicate with one master. The master
can communicate with several slaves. An example XCP bus structure is shown in
Figure 2.7. [27]
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Figure 2.7: An example of a master-slave topology (cf. [27, p. 15])

An XCP message can be divided into two categories:
Command Transfer Object (CTO)

CTOs transmit commands. They are sent from the master to the slave. The slave
reacts with a positive or negative response. Commands are for example CONNECT,
UPLOAD, DOWNLOAD, MODIFY_BITS. These commands are each assigned to a

unique number. [27]
Data Transfer Object (DTO)

DTOs are used for the exchange of synchronous measurement and adjustment data.

The slave sends data synchronously to internal events via Data Acquisition (DAQ). [27]

DAQ is a measurement method that is used to transfer DTOs from slave to master. The

Data exchange via DAQ is processed as follows:

The data exchange of DTOs is divided into two phases. An initialization phase includes
the master instructing the slave which data have to be sent in response to the various

events. At the end of the initialization phase, the master starts the measurement phase
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at the slave. In the measuring phase the slave sends the requested data to the master.
This happens without the request from the master. The measurement continues until a
stop command is sent from the master to the slave. The data stream from the master to
the slave also occurs in two phases. During initialization, the master advises the slave
which data it will send during the measurement phase. During the measuring phase,
the master sends the data to the slave, which transfers this data to the application. [27]
A DAQ-list is created from several Object Descriptor Table (ODT)s. To identify mea-
suring objects unambiguously, their address and length are important. These two pa-
rameters are stored in an ODT.

Schematic Figure 2.8 shows the structure of an ODT. [27]

RAM Cells

\ OoDT
address, length

address, length
address, length
address, length

WIN|[F|[O

A
[pD|of1]2]3]..]

Figure 2.8: Assignment of memory locations of the slave to DAQs by ODTs (cf. [27,
p- 38])

Several ODTs are combined into one DAQ list. As seen in Figure 2.9.
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ooT#2 | | oDT

opT#l| | oDT

ODT #0 oDT
0 address, length
1 address, length =
2 address, length | Hip=2 | 0 | 1 | 2 | 3 | |
3 address, length —>|PD=1[0]1[2]3].|
—|pPD=0|0|1]2]3]..]

Figure 2.9: Example DAQ-list from three ODTs (cf. [27, p. 39])

2.9 CMake

CMake is a compiler-independent opensource system that manages the build process
within an operating system. CMake was developed to fill the need for a cross-platform
build environment for the Insight Segmentation and Registration Toolkit. The first im-
plementation was done in 2000, when Bill Hoffman of Kitware took some of the key
ideas from pcmaker, an earlier system, and extended them. CMake is extensible, and
designed to have the ability to be used in conjunction with the native build environ-
ment. CMake works by placing configuration files in those source directories that are
needed for the build process. These files are called CMakeLists.txt. Through these con-
figuration files, standard build files such as makefiles on Unix and projects/workspaces
on Windows Microsoft Visual C++ (MSVC) are created. These standard build files
created by the configuration files compile source code, create wrappers, build libraries
and executables. Libraries can be built static or dynamic by CMake. Through the sup-
port of in-place and out-of-place builds, multiple build processes can be created from

one source tree. [30]

2.10 Simulink code generation process

In this section, an overview of the code generation process of MATLAB Simulink [8]

is given.

The base of the code generation process using MATLAB Simulinkis is the System Tar-
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get File (STF). The STF contains information about the code generation sequence of

the process. In the STF, variables can be defined that are needed during code genera-

tion, such as the Target Language Compiler (TLC) variable that define the code format.
STFs have the ability to inherit the properties of other STFs through inclusion. STFs

are TLC files. [31]

TLC files are the files that control the way code is generated. They allow to gener-

ate platform specific code or to make adjustments in terms of runtime, code size or

compatibility. [32]

Figure 2.10 shows in which code generation step TLC files are used.

Simulink
model.slx

y

Simulink Coder

Simulink
Coder Build

TLC program:
e System target file

model.rtw

y

e Block target files

e Inlined S-function target
files

e Target Language

—>

Target Language
Compiler

Compiler function
library

model.c

\ 4

Run-time interface support

. —>
files

Make <— model.mk

model.elf

Figure 2.10: Position of the TLC file in the code generation process (cf.[32])

In figure 2.10 the code generation process of a simulink model (model.slx) to an

executable (model . elf) for a hardware processor is presented.

The Simulink Coder creates amodel . rtw file from a Simulink model. The . rtw-file
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describes inputs, outputs, parameters, memory, states and other model components and

their properties. The created model . rtw is then processed as input in the TLC. [33]

The Target Language Compiler generates source files and Makefile files from the . rtw
file depending on the specified .t1c files. That can be seen in figure 2.11. The

Makefile is used to build the source files into an executable. [32]

model.sIx

- - >
D—hﬁm Simulink Coder > odel.rtw

h 4

*tlc
=I| | Target Language
Target files I Compiler
v h 4
Generated makefile | model.mk model.c Generated source
code files

Figure 2.11: Schematic representation of processing the model . rtw file during code
generation (cf.[32])

2.11 Kalman filter

The Kalman filter is a filter that computes states of a system for linear discrete-time
signals by measuring noisy and partially redundant signals, using stochastic estimation
techniques. Compared to many other stochastic estimation methods, the Kalman filter
can be constructed iteratively and is therefore suitable for use in real-time systems. For

the use of the Kalman filter, basic knowledge about state-space models is required. [34]

These are taken for granted in this chapter. Educational material on state-space models
are available in sources [34, p. 23] [35, p. 633] [36, p. 16].

For the use of the Kalman filter, a system is required that has, for example, three inter-

related variables. Of these three variables, two are measured and one is estimated. In
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this example these variables are the measured acceleration a(t), the estimated velocity
v(t) and the measured position A(z). [34, p. 8]

a(t) =v(t) = h(t) 2.7)

This model is inserted into the state-space model. The equations of the state-space
model are given in equation (2.8a) (state differential equation) and equation (2.8b)

(output equation). [34, p. 7]

-x(1)

x u(t)+G-z(t) (2.82)
y(t)=C-x(t)

+
+D-u(t) (2.8b)
Where x(¢) is the state vector, u(t) is the input vector, y(¢) is the output vector, z(t) is
the system noise/process noise, A is the system matrix, B is the input matrix, C is the
output matrix, D is the feedthrough matrix and G is the matrix of the system noise. [34]
If the state vector x(¢) is now defined as shown in equation (2.9a), this results in the

derived state vector x(z), shown in equation (2.9b). [34, p. 8]

()]

x(t) = |v(r) (2.92)
a(t)]
[A(1)] v(t) 0

()= |ve)| = a@)| + 0] -2() (2.9b)
La(r) ] 0 1

In equation (2.9b) it is simplified that the derivative of a(¢) results in zero. The change
of a(t) is taken into the system description by the system noise z(z). [34]
If now the state-space equations are set up, taking into mind that the output vector y(t)

consists of the measured quantities 4(7) and a(z), the result is: [34, p. 8]
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[0 1 0 0 [0
#(t)=10 0 1| -x(t)+|0|-ult)+ 0] z@) (2.10a)

0 0 0 0 1

~— ~~ ~—~

i A B _G

h(t) 1 00 0

— — : 2.1

y(t) a(t)] [0 01 x(t) + 0 u(t) (2.10b)

i y D_

Discretization of the state-space model

To apply the filter to a digital system with a sampling time of Tj, it is necessary to
transform the state-space model into the discrete-time domain. This is done with the
help of the following equations: [34, p. 9]

T
Ay=eAT Bd:/() AV Bdv, G,=A,; -G (2.11)

The equations for the state-space model are then: [34, p. 9]

x(k+1) =A; x(k) + By - u(k) + G, - z(d) (2.12a)
y(k) =C-x(k) +D-u(k) (2.12b)
Results: [34, p. 9]
1T 3 0 LS
A= |0 1 T, B;= (0], Gy=|T; (2.13)
0 0 1 0 1
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Observability of the system description

Before the Kalman filter can be applied to any system description, it is necessary
to check whether the observability of the system is given. Observability describes
whether, with a known input variable u(t) and a known output variable y(t), each state

of the system can be determined within finite time. [34]

For a system to be observable, the observability matrix Sz must have rank n for a

system of n-order: [34, p. 10]

C

>

Q.
S;=| C-A® (2.14)

C'An_l

To ensure that the discretized system is also observable, this should be tested on the
discretized system. [34] The observation matrix for the discretized system Sp is shown
in equation (2.15): [34, p. 11]

(2.15)

As soon as Sp has rank n, the system is observable. [37]
For the example system of a(z), v(t), h(t) (n = 3), the rank of S is formed as fol-
lows: [34, p. 11]

¢
Rang(S;) = Rang Ay =3 (2.16)
A2
Ay

c
c
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If it 1s assumed that 7y > 0, the system of equations can be solved. The example is
observable, because the rank of the observation matrix is equal to the order n of the

system. [34]

System and measurement noise

When using a Kalman filter, it is necessary to identify the system and measurement
noise. System errors are caused by model inaccuracies, measurement errors by noise
of the sampled signal. It is only necessary to determine the variance of the errors. It is
assumed that the noise sources are without mean values. [34]

In the example it is assumed that the derivative of a(r) results in zero, and possible
changes are described by the noise quantity z(k). From the system noise, the variance

Q(k) can be determined as shown in eq2: [34, p. 12]

Q(k) = Var(z(k)) = 62 (2.17)

Since in the example, only one noise quantity appears in the modeling, the random
quantity z(k) and thus also the variance Q(k) are scalar. [34]
In the design of the Kalman filter, it is assumed that the estimation error and system
noise are uncorrelated. If further assumptions are made, the noise is without mean
value, normally distributed, and the noise is white noise, the variance can be estimated
as in the following example. [34]
Example: [34, p. 13] Maximum acceleration delta 10 ms~2 during 7; Maximum accel-
eration change is equal to 3- o
Calculation: [34, p. 13]

0(k) = o2 = (L2)’ ~ 11 1m?s ™ (2.18)
Measurement noise is generated, for example, by the quantization of signals or by
other disturbances. To include measurement noise in the system, the measurement

noise v(k) is superimposed on the output signal. The discrete system is then described
as shown in equation (2.19b). [34, p. 13]
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x(k+ 1) = Ag-x(k) + By - u(k) + G, -2(d) (2.19)

y(k) =C-x(k)+ D u(k) + v(k) (2.19b)
It is important to note that the input vector u(z) remains unchanged and that the esti-
mation error and the measurement noise must be uncorrelated. If it is further assumed
that the measurement noise is a noise without mean value, normally distributed, and
white noise, the expected value E(v(k)) = 0. [34]

The equation for calculating the variance of the measurement noise is given in equa-
tion (2.20). [34, p. 14]

R(k) = Var(y(r)) (2.20)

If the input signals of the example are assumed to be without mean value, normally
distributed, their variances can be calculated by Var(v,(k)) = o7 and Var(v,(k)) =
c2. [34]

Furthermore, it is assumed that the two measurement noise variables do not influence
each other, which means that they are stochastically independent. It follows that their
covariance Cov(v,(k),v,(k)) is equal to zero. [34]

If the measurement noise values remain the same over time or change only in-

significantly, then the variance G;% and 62 can be estimated empirically by equa-
tion (2.21). [34, p. 14]

1

Var(x) = |
n JE—

é(x(k) —E(x))? 2.21)

If 6}3 ~20m? and 62 ~ 0.2m?s~*

follows: [34, p. 14]

are estimated for the example, R(k) is calculated as
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Var(vy,(k)) Cov(m(k)avc:(k))) (2.22a)

R(k) = Var(v(k)) = (COV(Vh(k),Va(k)) Var(va(k))

2 2
o2 0\ _[20m 0
- (o 62> = < 0 02m2s* (2:22b)

a

The variance R(k) describes how reliable the measured values are. In most cases,
the state variables will change only slightly, if the noise variables are not estimated

correctly. [34]

Kalman filter equation

The principle equations developed by Kalman are shown in equation (2.23) and equa-
tion (2.24) and are taken from [34, p. 15].

Correction:
)_?(k) =C-%(k)+D-u(k) (2.23a)
Ax(k) = X(k) —)_?(k) (2.23b)
K(k)=P(k)-C"-(C-P(k)-C" +R(k))™" (2.23¢)
5(k) = £(K) + K (k) - Ay(K) (2.23d)
P(k) = (1—K(k)-C) - P(k) (2.23¢)

Prediction:
2(k+1) =Ag-5(k) + By u(k) (2.242)
Plk+1)=A,-P(k)-Aj +Gy-Q(k) -G} (2.24b)

The derivation of the Kalman equation can be found under [34, p. 85].

In the Kalman equations (2.23) and (2.24), it can be seen that an £(¢), and an %(¢)
vector are calculated. The state vector £(¢) is the predicted state vector, and X(z) is the
corrected state vector.

The Kalman filter is accessed as follows: [34]
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1. Calculation of the difference Ay(k) between the output variable ¥ and the current
Y, seen in equation (2.23b) B B
2. The Kalman gain K (k) is calculated in equation (2.23c) to correct the estimated
state vector £(k), by computing the corrected state vector £(¢) in equation (2.23d)
3. In equation (2.23e) the covariance of the estimation error £(k) is calculated, the
estimation error is the difference of €(k) = x(k) — x(k).
4. In equation (2.24b), the covariance of the estimation error I_S(k) is extrapolated.
By using equation (2.23a), equation (2.23b), equation (2.23c), equation (2.23d), equa-
tion (2.23e), equation (2.24a), and equation (2.24b), the velocity can be estimated from

the example.
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3 Problem Analysis and Requirements

In order to determine the requirements of a mechatronic system, the CONceptual de-
sign Specification technique for the ENgineering of complex Systems (CONSENS)
method initially sets up an environment model. Subsequently, requirements can be
specified from the environment model. [38]

The environment model created for this purpose can be seen in Figure 3.1. It is in-
tended to represent the information flows between the individual components. The
energy flows are neglected in this environment model. The environment model pro-
vides an overview of which interfaces are implemented.

The entire requirement specification, can be found in the item A.1.1.

The requirements specification also includes customer specifications. For example, the
firmware, that is executed on the Arm-based Cortex-M4 core, must be created by code
generation using MATLAB/Simulink. In Simulink, the model must be monitored in
External mode via XCP on TCP/IP. The External mode must also provide the ability

to tune model parameters during runtime.

3.1 Environment model

The environment model in Figure 3.1 shows the Microprocessor Unit (MPU), repre-
sented in a blue system element. This figure does not show that there are two inde-
pendent processors within the system element STM32MP1. This is illustrated in the
hardware components connection map in chapter 4 figure 4.3.

The used hardware components of the self-balancing robot are explained in more de-
tail in the Figure 5.6. The physical connection between the MPU and the hardware
components of the self-balancing robot is established by a connection board.

Sensors and actuators constitute the most important environment elements. They are

located on the driver board of the self-balancing robot. [39]
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Figure 3.1: Environment model

3.2 Application scenarios

The applications scenario can be divided into two points:

Model-based design: Using MATLAB Simulink for rapid prototyping on the Cortex-
M4.

The example application: The implement of software components for the balancing
control of the self-balancing robot is used to show that the developed Simulink
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target matches real-time boundaries. The application shows also the advantages

of heterogeneous multiprocessor platforms.

3.3 System Requirements

The requirements specification A.1.1 lists all requirements for the software compo-
nents for the MATLAB Simulink target for the STM32MP1 to be developed. The
requirements for the development of software components for the example applica-
tion are also listed in the requirements specification. The example application is a
software to control the self-balancing robot. This example application is intended
to show that the developed MATLAB Simulink target can match real-time require-
ments. item A.1.1.

The requirements specification lists the requirements, their risks, and the methods used
to verify these requirements. The purpose of the requirements specification is to cap-
ture all requirements that are defined for the software components because it is neces-

sary to verify if the requirements comply with the implementation.
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4 Software design

The design process is divided into two sections. The first section describes the design
of the MATLAB Simulink coder target for the real-time system, which is executed on
the Cortex-M4 processor, and the design of a data bridge, whose task is the data ex-
change between the MATLAB development computer and the real-time system. This
data bridge is executed on the Cortex-A7 processors. The second section describes
the design of an example real-time application. Within this application, an inverted
pendulum is to be controlled. The real-time capability of the system is demonstrated
by this control. In addition, a graphical user interface for parameter visualization and
the ability of input parameter adjusting is designed. The addition graphical interface is
not a subject of the real-time System. The main task of the graphical application is to
demonstrate that during the independent execution of the real-time application on the

Cortex-M4, all the advantages provided by an embedded Linux system could be used.

4.1 Design of the Simulink coder target

One of the main decisions in the design process and the design of the software architec-
ture is defined by the requirements specification item A.1.1. The Req_01 specifies that
the model step must be called by a timer interrupt. In the previous coder target [40],
the model step is called by a FreeRTOS [41] task. Req_02 specifies that external mode

via XCP must be integrated into the Simulink code generation process.

According to [31] models can be executed in real-time on the target hardware if the
model step is managed by a real-time operating system, or if the model step is called

in the context of an ISR on bare-metal target hardware.

The planning therefore provides that the model step is called by a timer interrupt. The

design of how the model steps are to be called is shown in figure 4.1.
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Interrupt Service Routine

. Hardware
Timer IRQ > Save Context
Interrupt

Execute Model

Collect Data

v

Restore Context

Interrupt Service Routine
Hardware Get data /
Interrupt Set data

Figure 4.1: In the upper image area, the call of the model step is shown. Separately
from this area, it can be seen that further peripheral interrupts can occur
independently from the processing of the model step.

To enable the generation of asynchronous hardware interrupts, a hardware interrupt
block must be created. The asynchronous interrupts are used to read or to write data.

The implementation of asynchronous interrupts is described in section 5.4.

The data packages of the external mode must be sent via the TCP/IP over Ethernet or
Universal Serial Bus Host (USBH). According to [14] it is not possible to map these
interfaces to the Cortex-M4 processor of the STM32MP1. This makes it necessary to
route the XCP messages via the shared memory over the Cortex-A7 processor. This
Cortex-A7 processor must pass the messages bi-directionally via a TCP/IP server to

the host computer on which the Simulink process is executed. This requires a connec-
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tion between the development computer and the Cortex-A7 processor. To create this
connection a TCP/IP server is set up on the Cortex-A7. The host computer is the client
for the TCP/IP connection. The XCP master is executed on the host computer [42], the
Cortex-M4 processor assumes the role of the client for the XCP connection. From the
XCP point of view, the Cortex-A7 processor only passes the messages and does not
participate in the actual XCP communication.

The communication process described, is shown in figure 4.2.

Target
Simulink Process Cortex-M4
XCP-Slave
!
XCP Driver
A
T Cortex-A7
XCP-Master J
v
mexFunction XCP msg. forwarding
TCP/IP Client TCP/IP Server
l TCP/IP on Ethernet l
- 7
PR ,7
P i
=" 7
Extemal Mode/XCP Message Format ,/

| header | Data in target format

Figure 4.2: Communication design for the implementation of the External Mode com-
munication using XCP over TCP/IP

4.2 Design of the distributed system

The design of the distributed application is based on a closer look at the existing hard-

ware. Thereby it is extracted how the individual hardware devices must be controlled.
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After considering the control of the hardware devices, the hardware component con-
nection diagram shown in figure 4.3 is drawn up.

This plan shows how the hardware has to be connected to the peripheral devices of
the STM32MP1. During this mapping process, it must be decided if the hardware
devices are assigned to the real-time capable system (firmware running on the Cortex-
M4) or to the system running the Linux operating system (application running on the
Cortex-A7).
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Figure 4.3: Hardware components connection map

Figure 4.3 shows a schematic diagram of the STM32MP1 MPU on the top of the pic-

38



4 Software design

ture in the gray box. The Cortex-M4 processor is shown in the gray box on the left side.
It is connected to the Cortex-A7 processor via the SRAM block. Below the processors,
the required peripheral hardware of the STM32MP1 is shown schematically. These are
connected to the yellow environment elements. These represent the given hardware of

the self-balancing robot, as well as the user and the development computer.

The decision whether to assign the yellow environment elements to the Cortex-M4 or

the Cortex-A7 is based on several criteria:

1. Which processor can the hardware peripheral block of the MPU be assigned to

during pin configuration via STM32CubeMX 4.1

2. Is it important that the element is integrated into the real-time capable applica-

tion? 4.2

3. On which processor is the estimated implementation effort minimized?4.3

Table 4.1 were collected by using STM32CubeMX [43] via the STM32CubeMP1

v1.4.0 ecosystem [44].

Hardware peripheral block | ARM Cortex-M4 | Dual ARM Cortex-A7
SPI yes yes
Timer yes yes
GPIO yes yes
ADC yes yes
Network interface no yes
Touch display no yes

Table 4.1: Mapping of hardware configuration possibilities using STM32CubeMX

Table 4.2 is based on information that was collected in the requirement specification

A.l.1.

Interfaces Real-time capability
Accelerometer, gyroscop sensor yes
Hall sensor 1 & 2 yes
Motor driver yes
Battery voltage no
Ultrasonic sensor yes
Development computer no
User no

Table 4.2: Interface real-time capability required
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The information shown in table 4.3 cannot be reconstructed. It is based on the empiri-

cal values collected within preliminary projects at the STM32MP1 MPU.

Hardware peripheral block | Effort on Cortex-M4 | Effort on dual Cortex-A7
SPI medium high

Timer low medium

GPIO low low

ADC medium high

Network interface not possible low

Touch display not possible medium

Table 4.3: Estimated implementation effort on Arm-based Cortex-M4 compared to the
estimated implementation effort on Arm-based dual Cortex-A7

The assignment of the hardware peripheries to the processors is derived from ta-

bles 4.1, 4.2, and 4.3. This assignment is shown in figure 4.3.

After assigning the peripheries to the processors, the applications for the two proces-

sors are planned. This is described in the following section 4.2 and section 5.9.

Design of the real-time application

The real-time application, is implemented by the MATLAB Simulink target.

To control the hardware peripheral blocks assigned to the real-time system by MAT-
LAB Simulink, hardware-related Simulink blocks are developed for these peripheries.
For this, the functions, shown in table 4.4 must be provided by hardware-related
Simulink blocks.

Hardware peripheral block | Function
Sending data packages
SPI _
Receiving data packets
Timer Set PWM
Get Counter
GPIO Set qutputs
Get inputs
ADC Get ADC data value

Table 4.4: Planned hardware-related Simulink blocks
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The implementation of the hardware-related Simulink blocks is described in sec-
tion 5.5.

To develop a concurrent real-time application, the polling, explained in section 2.4, has
to be avoided. To banish polling from the application, the implementation of hardware
specific interrupts and DMA 1is used. The real-time application is divided into serveral
ISRs. During the following consideration all occurring ISRs are called tasks.

To perform scheduling, the required tasks are analyzed. The tasks are shown in ta-
ble 4.5. This requires the implementation of the hardware-related Smulink blocks.

To analyze the task, the system priority of the task is configured with the lowest ad-
justable system priority. To be able to observe the times when the task is active from
the outside, a GPIO is set to the high level at the beginning of the task, and the GPIO
is reset when the task is completed. At the toggling GPIO, the duration, as well as the
periodicity of the task, can be analyzed by using a high-frequency oscilloscope 4.7.
The firmware used for analysis is generated with the external mode and with the use

of the compiler optimization —03.
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Task no. i | Task short description

0 Model task, executes the generated Simulink model.

| Sensor has values task, detects when in the values of the MPU6500 are
ready for reading.

) Sensor values received task, the task is executed when the sensor data
has been received via DMA.

3 Sensor value request transmission commplet task, the task is executed
when data has been transmitted to the MPU6500.

4 Set PWM Values task, the task sets the PWM Duty Cycle.
Get Timer Task, the task reads the counter register of the timer and the

5 )
level of a GPIO pin.
Get Timer Task, the task reads the counter register of the timer and the

6 )
level of a GPIO pin.

7 IPCC message received task, the task detects whether a message has
been received from the main processor.

8 ADC half received task, the task signals that the half data of the ADC
DMA transmission has been done.

9 ADC complete received task, the task signals that the complete ADC
DMA transmission has been done.

10 Get Timer Task, the task reads the counter register of the timer.

11 Get Timer Task, the task reads the counter register of the timer.

12 IPCC message received task, the task detects whether a message has been

send from the main processor.

Table 4.5: List of required tasks in the real-time application

To provide an overview, table 4.6 assigns the tasks to the respective hardware compo-

nents.
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Hardware component Interrupt source | Task no.
Simulink model Timer 0
Accelerometer, EXTI 1
gYroscop sensor DMA-Streams 2,3
Motor driver Timer 4
Hall encoder 1 Timer 5
Hall encoder 2 Timer 6
Development Computer | IPCC 7
Battery voltage DMA-Stream 8,9
measuring point

Ultrasonic sensor Timer 10, 11
User IPCC 12

Table 4.6: Overview of tasks, hardware components and interrupt sources

Table 4.7 shows the high-frequency oscilloscope used for the analysis of the tasks.

Measuring device | KEYSIGHT MSOS054A
Series number MY57160102
Inventory number | 170722

Table 4.7: Measuring device

Table 4.8 shows the measured period times 7; and the worst case execution time C; in
us. The measurements were taken with the measuring instrument shown in table 4.7.
In table 4.8 it can be seen that in column 7; the tasks 7y, T4, T3 79, T10, and 711 have been

assigned the value var;. This is because these tasks are dependent on time-variable

events.
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Task no. i | 7; / ps Ci/ps

0 var; 99.818
1 999.47 | 46.467
2 997.62 | 5.4812
3 99791 | 4.0167
4 var; 6.8316
5 501.57 | 4.1124
6 501.57 | 4.1124
7 1000000 | 2.9357
8 var; 4.6819
9 var; 4.6437
10 var; 6.4102
11 var; 6.4102
12 8907.7 | 1.2778

Table 4.8: Period 7; and worst-case execution time C; of task system 7

Dependencies of the time-variable events:

Task 7y: T of 7y depends on the model step of the control system. This is determined
in section 5.8.

Task 74: 74 defines how often the Pulse Width Modulation (PWM) value of the motors
is set. The T4 value can be set via the block mask parmeter Frequency (= 1/7y),
shown in figure 5.15, of the block from section 5.5.

Task 73: T3 depends on how fast the ADC data request block 5.5 is called. The sample
time of the block position within the Simulink model determines 73 (for example,
ADC data request block on Simulink root: 73 = model sample time).

Task 79: Ty = Ty the period time of 79 behaves like the period time of 7g

Task 71p: 710 depends on the trigger frequency of the ultrasonic sensor. It is triggered
by a GPIO pin. The trigger period is defined by a square wave signal as shown
in figure 5.49.

Task 711: 711 = Tio the period time of 7;; behaves like the period time of 7

In figure 4.4 the worst case execution time C; of the tasks are visualized.
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1

tasks T;
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Figure 4.4: Worst case execution time C; of the required tasks 7;

When planning the scheduling of the real-time tasks, it is assumed that the release
time r;, is negligibly small. The calculated utilizations u;, as well as the total utilization
Usum, are calculated in table 4.9 for RM and DM. The deadlines used for the calculation
of the total utilization Us,,, of DM are taken from the requirements (Req_05, Req_06,
Req_07, Req_08, Req_09 A.1.1). In the calculation of the total utilization Uy, of RM,
equation (2.1) applies to the task utilizations u; and equation (2.3) to Uy,,,. For DM,
the task utilizations are calculated by C;/T;, and Uy, is calculated by equation (2.6).
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Taskno.i | T;/us | Ci/us | D;/lus RM u; DM y;

0 1000 99.818 500 0.099818 | 0.19964

1 997.47 | 46.467 500 0.046492 | 0.092934
2 997.62 | 5.4812 500 | 0.0054943 | 0.010962
3 99791 | 4.0167 500 | 0.0040251 | 0.008033
4 500 6.8316 100 0.013663 | 0.068316
5 501.57 | 4.1124 50 0.0081991 | 0.082248
6 501.57 | 4.1124 50 0.0081991 | 0.082248
7 1000000 | 2.9357 | 1000 | 2.936E-06 | 0.002936
8 1000000 | 4.6819 | 1000 | 4.682E-06 | 0.004682
9 1000000 | 4.6437 | 1000 | 4.644E-06 | 0.004644
10 100000 | 6.4102 100 6.41E-05 | 0.064102
11 100000 | 6.4102 100 6.41E-05 | 0.064102
12 8907.7 | 1.2778 | 1000 | 0.0001434 | 0.001278

Usgm = 0.186 0.686

Table 4.9: Calculation of task and total utilization for RM and DM

The maximum permissible total utilization Uy, for n = 13 tasks is calculated accord-

ing to equation (2.3) in equation (4.1).

Ugm < 132"/ = 1)~ 0.712 (4.1)
The total utilizations Uy, calculated in table 4.9 are smaller than the value resulting
from equation (4.1). Therefore, they are permissible. Since deadlines are defined in
the requirements, DM is applied. The priority is now assigned according to the size of
the deadline D; of the task, described in section 2.3. If the deadlines are the same, the
task with the higher utilization is prioritized. The lowest assigned priority value has
the highest priority. Tasks that are called via the same interrupt or that have the same
deadline get the same interrupt priority.

The assignment of task priorities is shown in table 4.10.
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Task no. i | Priority value
0 4
1 5
2 6
3 7
4 2
5 1
6 1
7 9
8 8
9 8

10 3
11 3
12 9

Table 4.10: Task priority assignment

The priority values of table 4.10 specify the interrupt priorities which are inserted into

the interrupt blocks during model development 5.7.

Design of the non real-time application

When designing the non real-time application, the following points must be observed:

* The XCP messages must still be passed to the Application.
* A graphical application must be implemented that allows the user to monitor and
tune model parameters.

During the software design 4 tasks are identified:

Task 1: Graphical application and sending set model parameters to the Cortex-M4.

Task 2: Receiving model parameters intended for display in the graphical application.

Task 3: Receiving XCP messages from the Cortex-M4 and forwarding them via
TCP/IP to the development computer.

Task 4: Receiving XCP messages from the development computer and forwarding

them to the Cortex-M4.

An overview of the planned implementation is shown in figure 4.5.
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Figure 4.5: Schematic diagram of the non real-time application planning

It is planned to execute the task of the graphical application periodically within an idle

loop and to distribute the remaining 3 tasks to threads.
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The software implementation chapter describes the implementation of the Simulink
coder target, the external mode via XCP on TCP/IP, the Simulink blocks, the real-
time firmware, the non-real-time application, and the build process of the real-time

firmware.

5.1 Customization of a Simulink target for the
Cortex-M4

As specified in the technical requirement Req_01 A.1.1, the code executed on the
Cortex-M4 must be generated from a Simulink model using the embedded coder [45].
Some platforms are supported by board support packages, like the STM Discovery
Boards [46], the NXP S32K1 series [47], the Texas Instruments C2000 [48] and the
Raspberry Pi [49]. To give a few examples.

Such a board support package is not available by the time this master thesis is started.
It is still possible to generate code for unsupported platforms by customizing the code
generation process in Simulink. [31]

To understand the code generation process, it is necessary to take a closer look at the

used components.

Implementation of the file customization templat

The STF that has to be selected, according to A.l1.1, is the “Embedded coder”
ert.tlc file. To customize the code generation process of the “Embedded coder”
a file customization template is developed.

The file customization template is selected by the “File customization template” option

under “Code generation/Templates”. Figure 5.1 shows that the default file customiza-
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tion template example_file_process.tlc is selected. In figure 5.1 the option
“Generate an example main program” is selected. The main program is generated by

associated TLC files of the option “Target operationg system”. [31]

&4 Configuration Parameters: implementation_target/Configuration (Active) — O *

Q

Solver Code templates

Data Import/Export

Math and Data Types Source file template: |ert_code_template.cgt Browse.. Edit...
» Diagnostics Header file template: |ert_code_template.cgt Browse.. Edit...

Hardware Implemeantation

Model Referencing Data templates

Simulation Target -

v Code Generation Source file template: |ert_code_template.cgt Browse.. Edit...
Optimization Header file template: |ert_code_template.cgt Browse.. Edit...
Report
Comments Custom templates
Identifiers File customization template: |example_file_process tlc Browse Edit
Custom Code
Interface +| Generate an example main program
Code Style Target operating system: |BareBoardExample -

Verification
Templates
Code Placement
Data Type Replacement
OK Cancel Help Apply

Figure 5.1: Simulink code generation settings for file customization template and the
option to generate a main program

To write a file customization template, the example_file_process.tlc [50]is

inspected.

The abstract of the file indicates, that it is an embedded coder sample file,
used to supplement the generated source code and create additional files. The
TLC code of the example_file_process.tlc file creates, if the vari-
able ERTCustomFileTest has the value TLC_TRUE, a timestwo.c and a
timestwo.h file. Then a #define is added to the public header of the

model and another #define is added to the private headers of the model. Then
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bareboard_srmain.tlc is included. The example_file_process.tlc
file shows an example of how files can be created by the STF, how code can
be inserted into generated files, and that a TLC file can include other TLC
files. If the variable ERTCustomFileTest does not have the value TLC_TRUE,
the example_file_process.tlc does not affect the code generation pro-
cess. By default, the ERTCustomFileTest variable is commented out, so the
example_file process.tlc hasno effect on the standard code generation pro-
cess. [50]

To determine which file customization templates are already available in Simulink, the
Matlab root directory is scanned. The file customization templates also called coder

targets, are shown in listing 5.1.

codertarget_bareboard. tlc
codertarget_file_process. tlc
codertarget_mainwithoutOS . tlc
codertarget_multiratemultitasking . tlc
codertarget_multiratesingletasking . tlc

codertarget_singleratesingletasking.tlc

Listing 5.1: Existing file customization templates from the MATLAB root
directory [51]

After inspecting the existing file customization templates, a custom file customization
templates is developed especially for the Cortex-M4 processor of the STM32MP1.
The file customization templates codertarget_mainwithoutOS.tlc [52] is
the closest to the file customization templates that has to to be developed. There are
also significant differences.

Main differences of the codertarget_mainwithoutOS.tlc [52] and the cus-

tom file customization templates being developed:

* The codertarget_mainwithoutOS.t1lc [52] generates a main function.

* The custom file customization templates must not generate a main function, be-
cause the main function is generated from STM32CubeMX.

* The scheduling of the codertarget_mainwithoutOS.t1lc [52] is based
on the fact that the timing of the model step is based on the system clock of the
target.
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The scheduling of the custom file customization templates model step must be

based on a timer interrupt call.

* The codertarget_mainwithoutOS.t1lc [52] supports targes that have a
scheduler and targets that do not have a scheduler.

* The custom file customization templates should only support the STM32MP1
Cortex-M4 running without a scheduler.

* The codertarget_mainwithoutOS.t1lc [52] supports the use of a boot-
loader background task.

* The custom file customization templates shall not support a bootloader back-

ground task. Instead of a bootloader, the initialization of the hardware of the

STM32MP1 Cortex-M4 shall be initialized by the initialization functions of the

C-project generated by STM32CubeMX.

Main commonalities of the two file customization templates:

* Both file customization templates call the model step function at predefined in-
tervals. Defined at the Solver settings under “Periodic sample time constraint”

* Both file customization templates contain initialization routines. This means the
initialization of the Simulink blocks, as well as the timing configuration of the
model step call.

* Both file customization templates contain functions that integrate the external

mode.

Before presenting snippets of the resulting custom file customization templates, the
model call from the main is shown in figure 5.2. The C code shown corresponds to a

summary of the code that is generated during the generation process.

The main, shown on the left side in figure 5.2, starts with the reset of all periph-
erals, the initialization of the flash interface, and the initialization of the system
clock. After that, peripheral devices like GPIOs and DMAs are initialized. Af-
ter the generated initialization routines of STM32CubeMX are finished, the func-
tion start_model_ Task, which is framed in blue, is called. In the function
start_model_Task, seen on the right side in the simulink_model_call.c
file, the initialization of the external mode is done at the beginning. This is followed
by the initialization of the model. Next, the final time of the external mode is config-
ured by the function rtSet TFinalForExtMode and the initialization of the ex-

ternal mode is checked by the function rt ExtModeCheckInit. Subsequently, the
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start_model_Task function is paused in the rt ExtModeWaitForStartPkt
function until the request of the development computer to start the model is re-
ceived. This pause can be skipped by a define, set in the build process. If a con-
nection error occurs during communication with the development computer in the
rtExtModeWaitForStartPkt function, the variable rtmSt opReq is set to 1,
and the execution of the model is interrupted using the rtmSetStopRequested
function. If this is not the case, a start message is sent to the development com-
puter by the function rt ERTExtModeStartMsg. The described functions of the
simulink_model_call.c file are taken from the code generation using the
codertarget_mainwithoutOS.tlc [52].
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% kKK ek ek Kk Kk Kk kK Kok Kk Kk kK

* @file : main.c
* @brief : Main program body
Kk kk kkk kk kkk kk hkk kk kkk kk Xk k ***/

/* Includes */

#include "main.h"

/* Private function prototypes */
void SystemClock_Config(void);
void PeriphCommonClock_Config(void);

__weak void start _model Task(void);

int main(void)
{
/* Reset of all peripherals,

* Initializes the Flash interface
* and the Systick. */

HAL Init();

/* Initialize all configured peripherals */

MX_GPIO_Init();
MX_DMA_Init();

/* CODE END Init */

/* File: simulink model call.c */
#include "simulink model call.h"

Istart_model_Task(); =

/* Infinite loop */
while (1)

{

}

Periodic call of the model
Timer IRQ

Starts the timer interrupt

void start model Task (void)

{
/* Initialize external mode */
rtParseArgsForExtMode () ;

/* Initialize the Model */
MODEL initialize();

/* External mode */
rtSetTFinalForExtMode () ;
rtExtModeCheckInit () ;

rtExtModeWaitForStartPkt () ;

if (rtmStopReq) {
rtmSetStopRequested () ;

}

rtERTExtModeStartMsg() ;

/* Configure TIM Interrupt to call
* MODEL_step periodically */

—I ConfigureiTIMistepiinterrupt()1

runModel = 1;
while (runModel) ;

/* Terminate model */
MODEL_terminate () ;
rtExtModeShutdown () ;

}

/* Model step interrupt */

step and the external mode;

void TIMx_IRQHandler (void) {

TIM Clear IRQ Flag(TIMx);

if (runModel) {
/* External mode */
rtExtModeOneStep () ;
if (rtmStopReq) {
rtmSetStopRequested () ;
}

stopRequested = ! ((rtmGetErrorStatus () &&
!rtmGetStopRequested () ;
runModel = ! (stopRequested);

}

NVIC_ ClearPendingIRQ(TIMx_ IRQ);
}
void Configure_ TIM step_interrupt (void) {

/* Time base configuration */
TIM IRQ Config(l/SIMULINK MODEL FIXED STEP));

/* Enable counter */

C-project

TIM EnableCounter (TIMX) ;

Figure 5.2: Illustration how the generated model is called from the STM32CubeMX

54




5 Software implementation

Then the green framed function Configure_TIM_ step_interrupt is called.
This function configures and starts the timer interrupt. If the timer was started there are
timer IRQ occuring periodically. These IRQ call the corresponding interrupt service
routine TIMx_TRQHandler. It is framed in purple. Within the ISR, the Timer IRQ
flag is cleared by the macro TIM_Clear_IRQ_Flag. If the variable runModel
has the value 1 the function rtExtModeOneStep is called first. Within this func-
tion, the XCP background task is executed. If the variable rtmSt opReq was set, the
function rtmSetStopRequested is executed. The next function MODEL_step,
framed in red, calls the Simulink model step. After the Simulink model step has been
executed, the functions rtmGetErrorStatus and rtmGet StopRequested are
used to check whether a stop request is present. If a stop request is present, the vari-
able runModel is set to 0. Afterward, the interrupt flag of the NVIC is cleared by the
macro NVIC_ClearPendingIROQ.

After the function Configure_TIM_step_interrupt was called the variable
runModel is set to 1. And the processor remains in the while loop as long as the
variable runModel is not reset. This while loop is periodically interrupted by the
timer interrupt, which calls the external mode and the model step. If the variable
runModel is set to 0 within the timer ISR the functions MODEL_terminate and
rtExtModeShutdown are called. MODEL_terminate contains deinitialization
routines of Simulink blocks or memory frees. The function rt ExtModeShutdown
sends a message about the shutdown to the development computer and cleans up the
allocated memory of the external mode. This represents the basic process of a firmware
generated by the embedded coder and the developed coder target.

For the more detailed description of the developed coder target, some TLC directives
must be known.
The first non-empty character of a TLC directive must be a percent sign. For example,
a TLC variable is declared as shown in the first line of listing 5.2. If a TLC variable
should be used as an expression then the variable has to be enclosed in %<>, seen in
listing 5.2. [53]

55



5 Software implementation

Jassign string = "Hello World"
Joassign expr =
/+ Print out

printf ("%<expr>");

Listing 5.2: TLC variable declarations and use of expressions

For Example the TLC generates from listing 5.2 the code shown in listing 5.3.

/+ Print out Hello World =/
printf ("Hello World");

Listing 5.3: Generated ¢ code from listing 5.2

Two percent signs mark a single line comment. [53]

%% Comment

Listing 5.4: TLC single line commands

Single and multi line commands can also be written as seen in listing 5.5. [53]

/% Comment

% Also comment %/

Listing 5.5: TLC single or multi line command

MATLAB functions are called as seen in listing 5.6. [53]

%matlab plot(x,y)

Listing 5.6: Using MATLAB functions in TLC files

If conditions can be used for example as shown in listing 5.7. In listing 5.7 the TLC
function ITSEQAL is used. This function checks, in this example, whether the parame-
ter i has the value 1.0. [53]

%if ISEQUAL(i, 1.0)

/+ If 1 has the value 1.0 this comment is transferred into the
code =/

YPoendif

Listing 5.7: Using if conditions in TLC files
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The custom codertarget is called codertarget_STM32MP1.tlc. It starts with a
comment header. Then several TLC variables are created. The most important ones
can be seen in listing 5.8.

YDassign srcBaseName = LibGetMdlSrcBaseName ()
% assign MODELBASERATE = CompiledModel.SampleTime [0].
ClockTickStepSize

Listing 5.8: Declaration and initialization of TLC variables.

The function LibGetMdlSrcBaseName returns the Simulink model name. [54]

The name of the simulink model is stored in the variable srcBaseName. The model
sample time is transferred from variable

CompiledModel.SampleTime[0] .ClockTickStepSize to variable
MODELBASERATE.

The C file simulink_model_call.c from figure 5.2, that is to be generated by
the TLC, needs a header file to include headers, defines and function prototypes. The
creation of this header can be seen in listing 5.9.
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%% Create simulink_model_call.h

Joassign simulink_model_call_hdr_file = LibCreateSourceFile (
"Header", "Custom", "simulink_model_call")

Y%openfile hdr_includes

%% Including header files

/+ Including headers =/

"

#include

#include "

#include "stm32mplxx_it.h"

#include "tim.h"

%closefile hdr_includes

J%openfile hdr_declarations

%% Declarate model defines and function declarations

/+ Model fixed step =/

#define SIMULINK_MODEL_FIXED_STEP %<MODELBASERATE>

/+ Function prototypes =/

void start_model_Task(void);

void TIM7_IRQHandler(void);

void Configure_TIM7_step_interrupt(void);

Y%closefile hdr_declarations

9%<LibSetSourceFileSection(simulink_model_call_hdr_file ,
"Includes", hdr_includes)>

J%<LibSetSourceFileSection(simulink_model_call_hdr_file ,

"Declarations", hdr_declarations)>

Listing 5.9: Creation of the simulink_model_call.h

The LibCreateSourceFile (type, creator, name) function creates a
new C or C++ file. If the file already exists, the existing file is referenced. Al-
lowed parameters for the input parameter t ype of the function are “Header” or
“Source”. This parameter determines the file extension (x.c or x.h). The input
parameter creator specifies who creates this file. The input parameter name speci-
fies the name of the file to be created. [54]

The commands $openfile and $closefile create a buffer. This buffer stores the
lines between the command $openfile and $closefile. [53]

The LibSetSourceFileSection (fileH, section, wvalue) function in-
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serts text buffers into a specified section of a file. The input parameter £ileH de-
termines into which file the text buffer is inserted. The input parameter section
determines in which section of the file the text buffer will be inserted. Sections are for
example: “Includes” and “Defines”. The input parameter value specifies the
text buffer that will be inserted. [54]

The TLC generates the code shown in listing 5.10 when first listing 5.8 and then list-

ing 5.9 are specified in a TLC-file and a Simulink model named test . s1x is opend.

#ifndef RTW_HEADER_simulink_model _call _h_
#define RTW_HEADER_simulink_model _call_h_
/% Including headers =/

#include "test.h"

#include "test_private.h"

#include "stm32mplxx_it.h"

#include "tim.h"

/+ Model fixed step =/

#define SIMULINK_MODEL_FIXED_STEP 0.001
/+ Function declarations =/

void start_model_Task (void);

void TIM7_IRQHandler(void);

void Configure_TIM7_step_interrupt(void);
#endif

/+ RTW_HEADER_ simulink model call h_  =x/

Listing 5.10: simulink_model_call.h file generated by the TLC

The source file simulink_model_call.cis generated in the same way as the cor-
responding header. Therefore, in the following only the generation of the C functions
known from figure 5.2 is described. The complete codertarget_STM32MP1.tlc
is available in the A.1.2.

Listing 5.11 shows the implementation of the start_model_Task function,

by the use of the codertarget_STM32MP1.t1c file.
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%% Create simulink _model_call.c

void start_model_Task (void){

%<RTMSetErrStat (0) >;

%if ExtMode
/+ Initialize external mode =/
rtParseArgsForExtMode (0, NULL) ;
Yoendif

/% Initialize the Model =/

J%<srcBaseName>_initialize () ;

%1f ExtMode
%<SLibGenERTExtModelnit ()>

Yoendif

%if ISEQUAL(CompiledModel. SuppressErrorStatus ,0)
runModel = %<ERTStopCheck () >;

YDoendif

/% Configuration of the TIM7 interrupt =/

Configure_TIM7_step_interrupt () ;

/+ Idle while loop =/

while (runModel) ;

/% Termination =/

Jo<srcBaseName>_terminate () ;

%if ExtMode
rtExtModeShutdown (%<NumSynchronousSampleTimes >) ;

%endif
}
Listing 5.11: TLC implementation of the function start_model_Task, according
to [52]

In listing 5.11 it is seen that in the function simulink_model_Task at the be-
ginning the expression RTMSetErrStat is added. Subsequently, if the TLC vari-
able ExtMode has the value TRUE, the parsing of the arguments for the external
mode is performed. Afterwards the mode is initialized. If the external mode is ac-
tivated, then the initialization of the external mode is carried out. If the variable
CompiledMode.SupressErrorStatus has the value 0, a function is called,

which checks the model status. Subsequently, the configuration of the timer interrupt
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is executed.

During the implementation, timer 7 was chosen for the implementation of the model
step, this decision was made during the hardware peripheral configuration in sec-
tion 5.6.

Afterwards the idle while loop is inserted into the C file. After the while loop the
termination of the model and the shutdown of the external mode follows, if the external
mode is configured.

Listing 5.12 shows to the configuration of the interrupt that calls the model step.

void Configure_TIM7_step_interrupt(void){
LL_TIM_InitTypeDef timInitStruct;

/+ Time base configuration =/

timInitStruct. Prescaler = __ LL_TIM_CALC_PSC(
SystemCoreClock , (1/SIMULINK _MODEL_FIXED_STEP)
%10000) ;

timInitStruct.CounterMode
LL_TIM_COUNTERMODE_UP;

timInitStruct. Autoreload = _ LL_TIM_CALC_ARR(
SystemCoreClock, tim_initstruct.Prescaler, (1/
SIMULINK_MODEL_FIXED_STEP) ) ;

timInitStruct.ClockDivision
LL_TIM_CLOCKDIVISION_DIV1;

/+ Initialization of the TIM7 peripheral =/

LL_TIM_Init(TIM7, &tim_initstruct);

/+ Enable TIM7 interrupt =/

LL_TIM_EnableIT_UPDATE (TIM7) ;

/% Start TIM7 counter =/

LL_TIM_EnableCounter (TIM7) ;

Listing 5.12: TLC implementation of the function/ISR TIM7_TIRQHandle

In listing 5.12 it can be seen that the following timer settings are done by the use of the
LL_TIM Init [55] function in line 9.

These settings are:

1. The calculated prescaler value from line 4, is set to the prescaler register, shown

in figure A.1.
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2. The counter mode, seen in line 5, is set to upcounting, by setting the DIR bit of
the TIM control register 1, shown in figure A.6.
3. The calculated auto-reload value, seen in line 6, is set to the Auto-Reload regis-
ter, shown in figure A.2.
4. The clock division is set to 1 in line 7, by setting the CKD bitfield of the TIM
control register, seen in figure A.6.
Then the UIE Bit form TIM DMA/Interrupt Enable Register is set in line 11 to enable
the timer interrupt. The register is seen in figure A.7. At least the timer is started in
line 13, by setting the CEN bit in TIM control register 1, shown in figure A.6.
The c functions used in listing 5.12 are taken from [55]. The macros to calculate the
values of the prescaler and the auto-reload in line 4 and 6 are taken from [56].
The macros calculate the prescaler according to equation (A.1), and the auto-reload

value according to equation (A.2).

Listing 5.13 shows the model step that is processed by the ISR of the timer interrupt.

%% Create simulink_model_call.c

/+ Model Step Interrupt =/
void TIM7_IRQHandler(void)
{
LL_TIM_ClearFlag_UPDATE (TIM7) ;
if (runModel){
%if ExtMode
%<FcnGenerateExtModeOneStep () >
Yoendif
Jo<srcBaseName>_step () ;
stopRequested = !(%<ERTStopCheck () >);
% i1f HONORRUNTIMESTOPREQUEST || ExtMode
runModel = !(stopRequested);
Yoendif

}
NVIC_ClearPendingIRQ (TIM7_IRQn) ;

}

Listing 5.13: TLC implementation of the function/ISR TIM7_IRQHandle
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The processing of the timer ISR, which calls the model step, runs as follows:

Line 6: The macro LL_ TIM_ClearFlag_UPDATE [55] resets the UIF bit of the
timer status register, seen in figure A.8.

Line 7: Checks that variabl runMode1 is not equal to 0.

Line 8: TLC if the external mode is selected during code generation, the if condition
in line 8 will insert line 9 in the code.

Line 9: (Only if ExtMode=1) Inserts the functions for calling the external mode, if
ExtMode = 1. The MATLAB function FcnGenerateExtModeOneStep is
taken from [52].

Line 10: End of the if conndition from line 8.

Line 11: Call of the model step. Here the generated code of the Simulink model is
called.

Line 12: It is checked whether a stop request is present. The MATLAB function
ERTStopCheck is taken from [52].

Line 13: TLC if condition inserts code if there is a runtime limited or if the external
mode is enabled.

Line 14: The variable runModel is set to the value non st opRequest.
stopRequest is set by the external mode one-step function or by the model
step if the run-time limit is reached.

Line 15: End of the if conndition from line 13.

Line 17: Clears the pending flag of the NVIC. The macro
NVIC_ClearPendingIRQ is taken from [57].

To generate code, the system target file of the embedded coder ert .t 1c is selected
in the Simulink “Hardware Settings” under “Code Generation”. The option “Generate

code only” is selected, too. This is seen in figure 5.3.
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Configuration Parameters: val_ert_hall_sensor/Configuration (Active)

Q

Solver Target selection
Data Import/Export
Math and Data Types

» Diagnostics Language C e
Hardware Implementation
Maodel Referencing
Simulation Target

¥ Code Generation

System target file: |ert.tic Browse...

Description: Embedded Coder

Build process

Optimization Generate code only
Report [] Package code and artifacts Zip file name
Comments 7
\dentifiers Toolchain seftings
Custom Code Toolchain: Automatically locate an installed toclchain |~
Interface GNU geclg++ | gmake (64-bit Linux)
Code Style .
Verification Build configuration: |Faster Builds | -
Templates » Toolchain details
Code Placement
Data Type Replacement
» Coverage Code generation objectives
» HDL Code Generation
Prioritized objectives: Unspecified Set Objectives..
Check model before generating code: | Off v Check Model...
OK Cancel Help Apply

Figure 5.3: Selecting the system target file for code generation

The developed “File customization template” codertarget_STM32MP1l.tlc is
selected in the Simulink ‘Hardware Settings” under “Templates”. This is seen in fig-
ure 5.4.
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Configuration Parameters: val_ert_hall_sensor/Configuration (Active) (<

Q

Solver Code templates
Data Import/Export
Math and Data Types Source file template: ert_code_template.cgt Browse Edit.
» Diagnostics Header file template: |ert_code_template.cgt Browse... Edit..
Hardware Implementation
Model Referencing Data templates
Simulation Target
¥ Code Generation
Optimization Header file template: |ert_code_template.cgt Browse... Edit..
Report
Comments Custom templates

Source file template: ert_code_template.cgt Browse... Edit..

Identifiers
File customization template: |codertarget_STM32MPL.tic Browse... Edit..
Custom Code

Interface Generate an example main program
Code Style
Verification
Templates
Code Placement
Data Type Replacement
» Coverage
¥ HDL Code Generation

0K cancel Help Apply

Figure 5.4: Selection of the developed coder target for the STM32MP1

After these settings have been made, the code can be generated.

5.2 Implementation of the External mode via XCP on
TCP/IP

The external mode turns the Simulink model into a bidirectional interface to the real-
time application generated from the Simulink model. The real-time application can be
started, stopped, signal paths can be observed and parameters can be adjusted by the
external mode. [58]

A schematic communication diagram of the external mode connection is shown in fig-

ure 5.5.
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Simulink Target Hardware
Model Target Applicaton
External Interface Target Connectivity

Communication Channel Transport Layer

Figure 5.5: External mode transport layer between the development computer and the
target hardware (cf. [59])

The external mode can be implemented through different transport layers such as XCP,
TCP/IP or serial. [59]

The implementation of the different transport layers is based on the implementation of
the rtiostream API. [42, 60]

The rtiostream API [61] is used to create a physically independent communication
channel for the exchange of data between processors. The rtiostream API is based
on four functions. The function rt IOSt reamOpen is used to initialize the chan-
nel. The function rt I0St reamSend is used to send data over the interface and the
function rt IOStreamRecv is used to receive data from the channel. The fourth
function rt IOStreamClose deinitializes the communication channel opened by
the first function. [61]

The implementation of the XCP brings the advantage of a more lightweight communi-
cation software stack on the real-time hardware side compared to the basic implemen-
tation of the external mode. [59]

Figure 5.6 shows a schematic diagram of the external mode via XCP.
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Development Computer Target Hardware

Target Run-Time System

Target Application

Simulink $
External Mode Target Connectivity
External Mode Abstraction
XCP Master
. XCP Slave XCP Platform

TCP/IP Link <> Protocol Abstraction
Serial Link XCP Slave

Transport

Figure 5.6: Schematic diagram of the external mode via XCP transport layers (cf. [42])

It can be seen that the XCP master (server) is located on the side of the development
computer. This is different when using the external mode without XCP. In the exter-
nal mode implementation without XCP there is an external mode server on the target
hardware side. [62]

This external mode server on the target side can be transfomed to a XCP master running
on the hardware of the development computer by implementing the external mode via
XCP. [42, 62]

This is the reason, why the implementation of the external mode via XCP leads to a
smaller communication software stack than the implementation of the external mode
without XCP. [42, 59, 62]

In addition, the implementation of the external mode via XCP supports the monitoring
of signals in the Simulation Data Inspector, and in the Logic Analyzer. These features
are not supported by the basic external mode. [59]

Based on these reasons, it was determined during the requirements engineering process
that the external mode must be implemented via XCP ( Req_02 A.1.1).

The implementation of the external model via XCP is done in four steps: [42]

1. Adding the external mode functions to the Simulink target.
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2. Adding the XCP slave protocol layer to the build process.
3. Adding the XCP slave transport layer to the build process
4. Creating an XCP platform abstraction layer

These four steps are explained next:

1. The adding of the external mode functions is already considered in section 5.1
during the development of the coder target. The external mode functions are included

at the positions that are wrapped by the if condition:

%i1f ExtMode
externalModeFunctions () ;
%oend

Listing 5.14: If ExtMode conndition, for the implementation of the external mode

commands

2. Adding the XCP slave protocol layer according to ASAM MCD-1 XCP [28]

standard to the build process. [42]

The source files are located at:
matlabroot/toolbox/coder/xcp/src/target/slave/protocol/src

These sources are added to the CMake project.

3. Adding the XCP slave transport layer according to ASAM MCD-1 XCP [28]
standard to the build process. [42]
The source files are located at:
matlabroot/toolbox/coder/xcp/src/target/slave/
transport/src

These sources are added to the CMake project.

4. The XCP platform abstraction layer consists of the XCP driver, which implements
the physical communication channel and the implementation of static memory allo-
cation as well as the implementation of other target hardware-specific functionalities,

such as a delay implementation. [42]

For the implementation of the XCP driver, a XCP custom abstraction layer [63] and a

rtiostream communication channel based on the rtiostream API [64] are created.
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The XCP custom abstraction layer defines platform-specific functionalities, like mu-
tual exclusion, a sleep function, data logging, address conversion, set memory, and

copy memory. [42]

The developed XCP custom abstraction layer can be found at item A.1.2:
Smart_RCP/02_Software/target/arch/STM32MP1_Source/

Xcp/xcp_inc/xcp_platform_custom.h

Since in section 4.1 it is planned to transfer the external mode XCP messages between
the Cortex-M4 and the development computer through the Cortex-A7, a rtiostream
layer is developed to provide a physical connection between the Cortex-M4 and the
Cortex-A7.

The developed rtiostream communications channel can be found at item A.1.2:
Smart_RCP/02_Software/target/arch/STM32MP1_Source/
Smart_STM32MP1_rtiostream

The rtiostream communications channel is implemented using the IPCC and the Open
Asymmetric Multi Processing (OpenAMP) Framework on the Cortex-M4 side of the
Inter-Processor Communication (IPC).

Figure 5.7 shows an overview of the IPC.
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Figure 5.7: IPC structure (cf. [65])

The implementation of the IPC is based on the Remote Processor Messaging (RPMsg)

and Mailbox mechanisms. [66]

As show on the Cortex-M4 side in figure 5.7, the IPCC and the OpenAMP framework
is needed for the implementation. The required configuration for these components
can be seen in figure A.20 and figure A.21.

There are two different ways to implement buffer exchange between the Cortex-A7 and
the Cortex-M4. The first way is the “Direct buffer exchange mode”. In this mode, only
effective user data is transferred by RPMsg buffer during data transfer. The memory
allocation is hard defined in the code (default = 512 B). This mode can be implemented
with small effort. The mode transmits data with a maximum speed of 5 MBs~!. Each

transmitted message triggers an interrupt at the receiving processor by the [IPCC. For
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example, a 512 B RPMsg transmitted at 1 MBs~! would trigger about 2000 IRQs per
second. The second way is the “Indirect buffer exchange mode”. This mode uses
RPMsgs to pass references to the effective data buffers. These data buffers can be
of any size. The data access can be done on cached or none cached memory, Dou-
ble Data Rate (DDR) or MicroController Unit (MCU) SRAM, DMA, or any master
peripheral. This method requires an increased implementation effort compared to the
first mode. [67]

For the implementation of the rtiostream communication channel the “Direct buffer
exchange mode” is used. The Cortex-M4 sided implementation is similar to the Code
example OpenAMP_TTY_echo [68].

If a Cortex-M4 interrupt is triggered by the IPCC, the received message is stored in a
ring buffer using the VIRT_UARTO0_RxCpltCallback [69] during the ISR. This
ring buffer is read out within the rt iost reamRecv function. The message 1s sent
using the function VIRT_UART_Transmit [69] within the rtiostreamSend

function.

On the Cortex-A7 side the IPC is implemented by the Linux remoteproc frame-
work [70] and the mailboxservice stm32_ipcc [71]. [66]

For the Cortex-A7, an application is implemented that forwards the external mode XCP

messages as shown in figure 5.8.

Within the Linux application the file discriptor /dev/ttyRPMSGO is opened by the
system call open [72].

Opening the file descriptor enables the exchange of RPMsgs through the ioct1 [73]
system call.

This process is implemented by the functions copro_openTtyRpmsg,

copro_readTtyRpmsg, and copro_writeTtyRpmsg of the copro.c [74]
file. The function rt IOSt reamOpen of the file rtiostream_tcpip.c [75] im-
plements the TCP/IP server on the Cortex-A7. Two pthreads [76] are created to check
if messages are received by the TCP/IP server or by the RPMsg framework. If thread 1
detects a new message on the TCP/IP server, it transfers it to the Cortex-M4 using the
file discriptor and the RPMsg framework. When the thread 2 detects a message in the

file discriptor, this message is sent to the development computer via the TCP/IP server.
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Figure 5.8 shows a schematic diagram of the application that passes the XCP messages.

Dual Cortex-A7

Development

Computer
Simulink |- o
External a
O
mode ¥

pthread

C

oprocessor

pthread

- >

~| Firmware

Simulink
model

Linux application:
External mode message bridge

Figure 5.8: Linux application for bidirectional forwarding of XCP messages

This application, named ‘“External_Mode”,

der item A.1.2.

To use the external mode via XCP on TCP/IP, the “External mode” has to be selected

in the Simulink “Hardware Settings” under “Interface”. The “Transport layer” has to

be set to “XCP on TCP/IP”.

The “MEX-file arguments” consists of the IP address of the target, the port number

and the path of the firmware. [77]
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Figure 5.9: Setting the external mode via XCP on TCP/IP

Then first the generated firmware, and then the Linux application “External_mode”
must be started on the STM32MP1.

Afterwards the external mode can be connected as described in [31].

5.3 Implementation of a MATLAB independent build

process

As described in Req_03 A.1.1, a build process independent of MATLAB and indepen-
dent of STM32CubelDE [78] must be set up.

The build process implemented in [7] is based on a “Template Makefile”. A Makefile
is generated from this during code generation. The Template Makefile is hardcoded. It

knows only the C files, which are present at the point in time, when the Template Make-
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file is created. The manual adjustment of the Template Makefile is time-consuming and

inefficient.

The build process of STM32CubelDE on the other hand is based on Eclipse C/C++
Development Toolkit (CDT). The CDT containing a C managed build, which gener-
ates a Makefile project. When using the STM32CubelDE to generate a Makefile, the
generated Makefile includes all files of the STM32CubelDE Makefile project. [79]

This has the advantage that the Makefile does not have to be manually adjusted. The
disadvantage is that the additional development tool ST32CubelDE is necessary.

The implementation of CMake brings the advantage that a CMakeLists.txt is a
blueprint for the generation of Makefiles, to compile the C project. This allows
defining in which subdirectories code for creating objects, libraries, or applications
are located. Thereby it is possible to build any source file after code generation
from STM32CubeMX, which is located in the subdirectories described in the CMake-
Lists.txt. Another advantage is that it is possible to call the CMakeLists.txt from any
directory path. [80]

This makes it possible to call the CMakeLists.txt file from the MATLAB project folder
and to build the firmware inside the project folder, without having to copy the whole
makefile project into the MATLAB project folder. The objects that are already com-
piled in the CMakeLists folder do not have to be recompiled when The CMakeLists.txt
is called from a different path. In this CMakeList.txt project, the structure is divided
into subdirectories. The build process of these subdirectories is described by their
CMakeLists.txt files, which are included in the parent CMakeLists.txt file. This is
mapped in figure 5.10.
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STM32MP1_Source

— CMakeLists.txt

— CM4
t CMakelists.txt

— CMakeLists.txt

— Common

t CMakelists.txt

— Dirvers

t CMakelLists.txt

— o o o

Figure 5.10: Structure of a STM32CubeMX prjectes

The build and deployment of the firmware on the STM32MPI, after the code
generation by MATLAB Simulink, is done by the build_and_deploy.bash
script A.1.2, that builds the firmware using the CMkaeLists.text and flashes the
firmware to the SRAM memory of the Cortex-M4 by ssh and the help of the embedded

Linux system.

5.4 Implementation of asynchronous Interrupts

The implementation of ISRs triggered by IRQs requires the configuration of the ac-
cording interrupt, the configuration of the peripheral where the interrupt occurs and
the programming of the according ISR. [81]

Since the generation of the C code for the Cortex-M4 has to be done by MAT-
LAB/Simulink, all this has to be done by placing code in blocks.

An example code initialisation of an IRQ and an ISR for an DMA stream can be seen

in listing 5.15 and listing 5.16.
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main () {

/% Configure NVIC =/

NVIC_SetPriority (DMA2_Stream2_IRQn, 0, 1, 0));
NVIC_EnableIRQ (DMA2_Stream2_IRQn) ;

/+ Configure DMA peripheral =/

LL_DMA_EnableIT_TC(DMA2, LL_DMA_STREAM 2);

while (1) {
}

Listing 5.15: Code example for the configuration of an interrupt

In listing 5.15 it can be seen that at the beginning the interrupt priority is set. Then the
corresponding interrupt is enabled in the NVIC. Then the corresponding peripheral is
configured and the interrupt is activated. From the activation of the interrupt enable
flag in the register of the peripheral the interrupt is active and can lead to an ISR by the

presence of an IRQ.

/+ Interrupt Service Routine of DMA2_Stream2 =/
void DMA2_Stream2_IRQHandler (void) {
/+ start DMA Transfer =/

if (LL_DMA_IsActiveFlag_TC2 (DMA2)) {
LL_DMA_ClearFlag_TC2 (DMA2) ;

}
NVIC_ClearPendingIRQ (DMA2_Stream2_IRQn) ;

Listing 5.16: Code example for the implementation of an ISR

Listing 5.16 shows the ISR, which is called by the IRQ. It is important that the corre-
sponding register bits (peripheral and NVIC) that led to the call of the ISR are reset in
the ISR. If these bits are not reset, then this can lead to a non-terminating call of the
ISR.
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MATLAB/Simulink supports the implementation of interrupt blocks. If the code gen-
eration is done by embedded coder, it is possible to include interrupts of the NVIC.
If the board that is used is not supported by a board support package, a board speci-
fied interrupt block can be created by modifying the interrupt block contained in the
“Support Package for ARM Cortex-M Processors”. [82]

How to create an interrupts block for an ARM Cortex-M target is explained in the
following:

Installation of the embedded coder Support Package for ARM Cortex-M proces-
sors. [82] The “Embedded Coder Support Package for ARM Cortex-M Processors”
can be downloaded from the MathWorks file exchange.[83]

Creating an xml interrupt description file based on the numbers and the names of the
interrupts of the interrupt vector table of the silicon vendor. An example xml interrupt
description file can be viewed after installing “Embedded Coder Support Package for
ARM Cortex-M Processors” by the commands shown in listing 5.17. [82]

cd(fullfile (codertarget.arm_cortex_m.internal.getSpPkgRootDir,
"registry’, ’'interrupts’));

edit ("arm_cortex_m_interrupts.xml’);

Listing 5.17: Open the example xml interrupt description file by entering the

commands shown in the MATLAB console

Within the xml interrupt description file the interrupts can be divided into groups. The
IrgName, as well as the IrqNumber must match the name of the interrupt and the
position in the interrupt vector table of the board. These two parameters are used
for code generation. The parameter NumberOfPriorityBits must be adapted to the
specification of the silicon vendor. It is possible to disable the “Disable interrupt pre-
emption” checkbox by the ShowPreemptionOption, this should be done if the board
does not support interrupt pre-emption. [82]

Figure 5.11 shows the relationship between the xml interrupt description file and the

interrupt block mask.
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ARM Cortex-M4 STM32ZMPL

<?xml version="1.0" encoding="utf-8"?>

IRQ
<!-- Copyright 2014-2015 The MathWorks, Inc. --> DMA2_Streama_IRQHandler
<Interruptinfo> -
<!-- ARM Cortex-M processor NVIC peripheral --> ARM Cortex-M Interrupt Block

. . Trigger the downstream function-call subsystem from an interrupt service routine.
<DeviceName>ARM Cortex-M4 STM32MP1</DeviceName> ——
The block output triggers the downstream connected function-call subsystem when the
<NumberOfPriorityBits>4</NumberOf PriorityBits> N e
. . Select the interrupt service routine with the 'Interrupt group' and the 'Interrupt name
<ShowPreemptOpti on>1</ShowPreemptOption> parameters.
The 'Interrupt number' displays the corresponding ARM Cortex-M interrupt vector table
entry.
Use the 'Simulink task priority' parameter to set the priority of the downstream function-
. call subsystem. The default model base sample rate priority is set to 40 with a lower
<!-- Cortex-Mx core exceptions --> priorty value indicating a higher prioity task. These settings can be adjusted in the
'Solver pane of the 'Configuration Parameters'. The Simulink task priority of the selected
interrupt is relative to the model base rate priority.
<I qurOUp> Check ‘Disable interrupt pre-emption’ to block all other interrupts while executing the

selected interrupt service routine.

<Name>Cortex-M DMA</Name> Check *Add simulation input port' to enable the 'SimIRQ" block input. In simulation, the
block triggers the downstream function-call subsystem if 'SimIRQ' is TRUE. 'SimIRQ' is
ignored in the generated code.

<Irglnfo> L U

<lrgName>DMA1_StreamO_IRQHandler</IrgName> Parameters
<| quumber>11</| quumber> Interrupt group:  Cortex-M DMA =

—=> Interrupt name: DMA2 Stream2_IRQHandler v

</Irglnfo>

Interrupt number:

Simulink task priority: 12
<l rqI nfo> Disable interrupt pre-emption

<IrgName>DMA?2_Stream2_|RQHandler</IrgName>
<IrgNumber>58</IrgqNumber>

Add simulation input port

OK Cancel Help

</Irglnfo>

Figure 5.11: The xml interrupt description file displayed next to the interrupt block
mask

Figure 5.11 shows a part of the xml interrupt description file on the left side, on the
right side the interrupt block can be seen on top, below this the interrupt block mask
is shown. The blue arrows symbolize the relationship between the xml interrupt de-
scription file and the block mask, as well as the block. The NumberOfPriorityBits is
set to 4 for the Cortex-M processor of the STM32MP157. This can be read from the
vendor specification in [24, p. 1266]. In the xml interrupt description file you can see
that “ARM Cortex-M4 STM32MP1” was specified as DeviceName. This name is
taken over together with the selected interrupt name in the block diagram. In the in-
terrupt block mask the interrupt group “Cortex-M DMA” is currently selected, within
this group the interrupt “DMA2_Stream2_IRQHandler” was selected under Interrupt
name. In the interrupt block mask it can be seen that the interrupt number is grayed out.
The interrupt number and the interrupt name were defined in the xml interrupt descrip-
tion file. For the interrupt “DMA?2_Stream2_IRQHandler” the position was specified

from the interrupt vector table. The interrupt position and the interrupt name can be
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found for the Cortex-M4 of the STM32MP157 board in [24, p. 1252]. In the xml in-
terrupt description file you can see that the TrgName “DMA2_Stream2_IRQHandler”
was assigned the TrgNumber 58, which corresponds to the interrupt position in the
interrupt vector table.

After the xml interrupt description file has been created, it must be registered in the
interrupt block. To do this, the Arm Cortex-M interrupt block is copied to a library
model and then registered using the command below in listing 5.18. [82]

The xml interrupt description file is registered in the interrupt block by the command

shown in listing 5.18.

set_param (hardware interrupt block, InterruptsXMLPath,

interrupt descritpion file)

Listing 5.18: Registration of the xml interrupt descrtiption file into the interrupt block

The library model containing the hardware interrupt block is then saved. From the
library model the hardware interrupt block can be copied into the application mod-
els. [82]

Deployment of an interrupt block in a Simulink model

When using interrupt blocks within Simulink models, two more block types are inter-

esting.

Function-Call Subsystems
A function-call subsystems is a subsystem that is executed when a function-call
event is pending at the control port. An aperiodically triggered function-call
subsystems can be called zero times, multiple times or once during a model
step. In order for the blocks within the function-call subsystems to be called

aperiodically, the sample time of these blocks must be set to -1.[31]

An example function-call subsystem, named “DMA?2_Stream2_IRQHandler In-
terrupt Service Routine” is shown in figure 5.12.

Rate Transition blocks
The Rate Transition block is designed to connect periodic and asynchronous

signal paths. If the Rate Transition block is inserted between two blocks with
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different sampling rates, the block automatically configures its input and output

for the transition.[31]

An example rate transition block named “Rate_Transition” is shown in fig-
ure 5.12.

The modified interrupt block can be used in the Simulink model as shown in fig-
ure 5.12.

ARM Cortex-M4 STM32MP1

IRQ

DMA2_Stream2_IRQHandler

accel
function() . accel_data
Outl » P Inl -
oo
DMA2_Stream2_IRQHandler Rate_Transition
gyro_data

Interrupt Service Routine -
MPUG500 data processing

Figure 5.12: Deployment of an interrupt block in a Simulink model

The model shown in figure 5.12 shows the interrupt-based call to read the DMA buffer
and process its data. The DMA buffer is read asynchronously within the function-call
subsystem as soon as the DMA2 Stream?2 IRQ is triggered. The read-in data is passed
on to the “MPU6500 data processing subsystem” via the rate transition block. This
subsystem is executed periodically.

If IRQs and ISRs are implemented by MATLAB/Simulink as described, configuration
codes are generated for programming the NVIC, programming the ISR (interrupt han-
dler). For a complete functionality of an interrupt the configuration of the respective
peripherals and the resetting of the interrupt flags of the peripherals is still missing.
These steps are done by custom Simulink blocks. These are described individually in
section 5.5.

If the ISR (interrupt handler) are generated by the embedded coder of MAT-
LAB/Simulink, a problem occurs during linking because two interrupt handlers with

the same name are now available in the project.
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To instruct the linker which of the existing ISRs has to be linked into the project, the
function that has to be excluded has to be marked with __weak.

The keyword __weak tells the compiler to export a symbol as weak. It can be applied
to variable, as well as function declarations and function definitions. If __ weak is
applied to a function definition, it behaves like a normally defined function, unless this
function is present in the image with the same name in non-weak. In that case only the
non-weak function is linked. [84]

To fix these linker errors all interrupt handlers generated by STM32CubeMX are
marked with ___weak. Thus the interrupt handlers generated by the embedded coder
have precedence when linking. All interrupt handlers marked with __weak but not
appearing in the MATLAB/Simulink generated code are treated as normal declared
functions. To avoid having to declare all interrupt handlers manually with ___weak
after each pin muxing change in STM32CubeMX, a patch is created that is able to do
that.

In listing 5.19 it can be seen how this patch is applied.

cd STM32CubeMXProjectDirectory
patch ./CM4/Src/stm32mplxx_it.c ./ patch/irq_weak.patch

Listing 5.19: Patching the interrupt handlers of the STM32CubeMX projectto __weak

5.5 Implementation of hardware-related Simulink
blocks

There are different ways to create custom Simulink blocks. [85] Not all methods
are equally suitable for generating hardware specific C code. Level-2 MATLAB S-
Functions are particularly suitable for generating hardware-related blocks, since they
support the implementation of TLC files. The implementation of TLC files allows
inlining. Level-2 MATLAB S-functions achieve lower execution speeds compared to
C S-functions, since their code must be executed via the MATLAB engine and is not
available in compiled form as for the C S-function. [86]

MATLAB S-Functions and Level-2 MATLAB S-Functions differ in their API. The
API of the Level-2 MATLAB S-Functions is more extensive, and it is recommended
to develop Level-2 MATLAB S-Functions blocks for newer developments. [87]
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In this thesis, the developed hardware blocks do not perform any simulation, so it does
not matter that by choosing the implementation by Level-2 MATLAB S-Functions,
the method with the lower simulation time is chosen. The blocks are included in the
Simulink model through a .m files. This file tells how many inputs and outputs a
block has, and which configuration parameters are passed to the TLC during the code

generation.

The block target file methods implemented in the .t 1c file are also created within
the .m file. These methods determine which TLC code blocks are inlined during code
generation. There are, for example, block target file methods which are inserted at the
start of the model, or which are iserted at each model step, as well as methods which

serve the setup or the termination of the block. [88]

The two objects, block and system, are passed to the block target file methods. In
the object block configuration parameters of the block are stored, some of them are
generated by the .m files. The object system contains to the Simulink sub or root

system information. [88]

The following block target file methods are summarized below:

BlockinstanceSetup The method BlockInstanceSetup (block, system)
is a setup method that insertes TLC code for each block implemented in the
Simulink model. [88]

BlockTypeSetup The method BlockTypeSetup (block, system) is a setup
method that insertes TLC code for each block type implemented in the Simulink
model. The application can occur, for example, when a lookup table is used
multiple times, but only needs to be initialized once. [88]

Enable The TLC code of the Enable (block, system) method is then inserted
if the block is in a Simulink subsystem that contains an enable function. [88]

Disable The TLC code of the Disable (block, system) method is then in-
serted if the block is in a Simulink subsystem that contains an disable func-
tion. [88]

Start The method Start (block, system) is used to insert TLC code into the
start function. The start function is executed only at the beginning of the
model. [88]

InitializeConditions The TnitializeConditions (block, system)

method inserts TLC code in two places. It inserts into subsystems that are con-
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figured to reset back to their initial state when activated. And the method in-
serts TLC code into the start function when the blocks are inside the Simulink
root system. The difference between the InitializeConditions and Start meth-
ods is that the block that performs its initialization with the InitializeConditions
method is reinserted within a subsystem when reactivated. [88]

Outputs The method Outputs (block, system) inserts TLC code in two
places. If the corresponding block is in the Simulink root, then the TLC code
is inserted into the output function of the Simulink model. If the block is in a
Simulink subsystem, the TLC code of the block is inserted into the output func-
tion of this subsystem. The output functions of the Simulink model can then be
called, for example, at each model step. [88]

Update The method Update (Block, System) inserts TLC code into the update
function of the model. It can be used for example to change an array index. [88]

Derivatives The Derivatives (block, system) method is used for inserting
TLC code into the derivatives function of the model. This method allows the
calculation of continuous block states. [88]

Terminate The Terminate (block, system) method is used to insert TLC
code into the termination function of the model. The method can be used for

example to reset initialized hardware or to free allocated memory. [88]

After an .m file and an .t 1c file are created, a mask is created for the block. The

main purpose of this mask is to allow entering the block parameters.

For example, the mask of an example block may look like in figure 5.13.

Block Parameters: EXTI_IRQ_Flag reset (]

MSFunction (mask) (link)

Parameters
GPIO Port | GPIOE -
GPIO Pin | GPIO_PIN_8 -

EXTI Line |8

Figure 5.13: Block mask of the EXTI IRQ handler block

The mask creation is performed by the Mask editor. As seen in figure 5.14.
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Mask Editor: Level-2 MATLAB S-Function7 [Read Only]

Icon & Ports ' Parameters & Dialog | Initialization ', Documentation |

Controls []|-Dialog box Property editor
B Parameter Type Prompt Name =]
Name

LA %=<MaskDescription=> DescTextVar Prompt

L Parameters ParameterGroupVar Type

#1 GPIO Port gpio_port =

e = #2 GPIO Pin gpio_pin Enable

#3 EXTI Line exti_no Visible

P =

_ ltem location

'__é Align Prompts

ED

=

]

&

B
El Container

[}

=

=

-

Figure 5.14: Mask editor, creating the block mask of the EXTI IRQ handler block

Next, the implementation of the developed Simulink blocks is described.

TIM_PWM_Config block

For the TIM_PWM_Config block, the block target file methods Start and Initialize-
Conditions are implemented. The TLC code of the method Start is inserted inside the
model before the TLC code of the method InitializeConditions. By using hardware
configuration TLC code within the Start method, and the start commands within the
InitializeConditions method, multiple timer channels of the same timer can be started.
Following example describes how to set register bits for a timer PWM configuration for
timer 1 and channel 1. For the configuration of a PWM the following bits in following

registers must be programmed: [89]

1. Set the prescaler value in the prescaler register, shown in figure A.1.

84



5 Software implementation

2. Set the Auto-Reload value in the Auto-Reload register mapped in figure A.2.

3. Resetting the CC1S bit in Capture/Compare mode register, shown in fig-
ure A.3.If the bit is not set, the channel is configured as output.

4. Set PWM mode through data field OCIM in Timer Capture/Compare mode reg-
ister, shown in figure A.3.

5. Set the duty cycle through the Capture/Compare register, shown in figure A.4.

6. Enable the timer channels by setting the CCI1E bit in the register Capture/Com-
pare Enable register, shown in figure A.S.

7. Starting the timer by setting the CEN bit in Timer control register 1, shown in
figure A.6.

With the equation (A.1) and equation (A.2) the PWM frequency fp.ioq 1s set. The
frequencies descriptions are listed here:

fckpge = Prescaler input clock frequency

Jckeny = Counter input clock frequency

fperioa = PWM frequency

The created TIM_PWM_Config block and the corresponding block mask are shown in
figure 5.15.

Block Parameters: o

MSFunction (mask) (link)

Parameters
TIM Periphery |1 8

-
i | TIM_PWM_Config
Time tick frequency 1000000 8 — —
Frequency |2000 8

PWM init. Duty Cycle |0

Figure 5.15: TIM_PWM_Config block and its block mask

If the block is used for synchronization of a PWM output, the user must enter the TIM
peripheral, the channel, the timer tick frequency, the frequency and the initialization
value of the duty cycle.

The setting of the frequency is not done fully automatically, because some timers have
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a 16 bit and others a 32 bit counter register. This must be noted by the user before
using the block so that the timer tick frequency (counter input clock frequency) can
be set correctly. The value for the Prescaler register, the value for the Auto-Relode
register and the value for the Capture/Compare register is determined within the TLC

code.

TIM_Set_DC block

To set the duty cycle of a configured PWM it is only required to adjust the value of
the Capture/Compare register. Shown in figure A.4. This is done by TLC code that is
inserted by the block target file method Outputs.

The created TIM_Set_DC block and the corresponding block mask are shown in fig-
ure 5.16.

Block Parameters: TIM_Set_DC2 Loc ]

MSFunction {(mask) (link)

Parameters

=11 TIM_Set_DC

Channel | CH3 v

Figure 5.16: TIM_Set_DC block and its block mask

As seen in figure A.4, the user has to select the timer and the channel within the block
mask.

The Simulink input type of the block is defined as double. The expected input values
are between 0 and 100. Within the TLC code, a value is formed which is calculated
from the Auto-Reload registers value and the Simulink input value. This value is writ-

ten to the capture/compare register.

(ARR+ 1) x Input
100

CC,eg,-s,e, = (uintSZT) 5.1
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At this point, it must be paid attention to the fact that the calculated value may not have
a higher value than 65535 for 16 bit timers.

TIM_CC_Interrupt_Config_Flag_Reset block

The TIM_CC_Interrupt_Config_Flag Reset block is implemented by the block target
file method InitializeConditions and Outputs. For example, if a Capture/Compare in-
terrupt is to be configured for channel 2 of timer 1, the bits are set as follows. Inside
the InitializeConditions method, TLC code is inserted to set the CC2E bit in the Cap-
ture/Compare Enable register, to enable the channel, shown in figure A.5. And the bit
CC2IE bit is set in the TIM1 DMA/Interrupt Enable register, shown in figure A.7.

The moment when the interrupt is triggered is determined by the third input field shown
in figure 5.17. The value that is written into the timer Capture/Compare Register is

calculated as described in equation (5.1).

To ensure that the interrupt can be triggered by the ARM-Cortex-M interrupt block,
the Capture/Compare interrupt for the NVIC must be enabled in the STM32CubeMX
configuration. The STM32CubeMX setting can be found under the selected timer
peripheral, under NVIC, as shown in figure 5.17.

® Parameter Settings @ User Constarts

& MNVIC Settings

® DMA Settings

@ GPIO Settings

TIM1 break interrupt m}

TIM1 update interrupt
TIM1 trigger and cormmutation irterrupt
| TIM1 capture cormpars interrupt

a|oo

Figure 5.17: STM32CubeMX configuration to enable the interrupt call by the ARM-
Cortex-M interrupt block

Within the block target file method Outputs, the TLC code checks whether the CCxIF
bit of the TIMXx status register is set. In this case, it is cleared. If the CCxIF bit is set
when entering the TLC code of the Outputs method, a 1 is returned at the Simulink
block output. If the bit was not set, a O is returned. The Simulink block output is
configured as an uint8_t datatype. Returning whether the bit has been set enables

the detection of multiple Capture/Compare channels within a timer Capture/Compare
ISR.
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The created TIM_CC_Interrupt_Config_Flag Reset block and the corresponding
block mask are shown in figure 5.18.

Block Parameters: (]

MSFunction (mask) (link)

Parameters

TIM_CC_Interrupt_Config_Flag_Reset > UG |

TIM Channel |1

Interrupt DC Time in % |50

Figure 5.18: TIM_CC_Interrupt_Config_Flag_Reset block and its block mask

The user must select the desired timer and the timer channel within the block mask.

This can be seen in figure 5.18.

TIM_Get_Counter

The block TIM_Get_Counter is very similar to the block
TIM_CC_Interrupt_Config_Flag_Reset. Within the TLC code of the block target file
method Outputs, the value of the timer counter register, seen in figure A.6, is returned
to the block output. Then, in TLC code of the Outputs method, the value of the timer
counter register is set to 0. The block output is assigned the datatype uint32_t, so
that the block can be used for timers with 16 bit or 32 bit counter register.

The created TIM_Get_Counter block and the corresponding block mask are shown in
figure 5.19.
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MsFunction (mask) (link)

Parameters

TIM_Get_Counter [

TIM PHERIPHERY |1

TIM CHANNEL 1

Figure 5.19: TIM_Get_Counter block and its block mask

This block is designed to be used in input Capture/Compare applications. The task of
the block is to read the timer counter register and reset the interrupt flag of the timer.

The user sets the timer peripheral and the configured timer channel as shown in fig-
ure 5.19 and positions this block in the Function-Caller subsystem that is called by the
ARM Cortex-M interrupt block, which is configured as the corresponding Capture/-

Compare interrupt.This structure is shown in figure 5.20.

ARM Cortex-M4 STM32MP1

IRQ

TIM1_CC_IRQHandler

function() ]

outl ] )
q - (L)

m I Capture/Compare Value
Function-Call

Subsystem
CC_IRQ-Handler

Figure 5.20: Location of operation of the TIM_Get_Counter block

The subsystem framed in red contains the TIM_Get_Counter block.

TIM_CC_Start_IR (only for the use of the external mode)
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SPI_DMA_Transmit

The SPI_DMA_Transmit block is implemented by the block target file methods Block-
TypeSetup, Start, Outputs, and Terminate.

Using the method BlockTypeSetup creates an spi_dma_transmit.h and an
spi_dma_transmit.cfile. The spi_dma_transmit. c fileincludes two func-
tions. One is to initialize the chip select pin, which is selected by the block mask and
the second function initializes the selected SPI DMA transmit peripheral. The follow-

ing steps are performed within the initialization function:

1. Setting the bits: DIR, CIRC, PINC, MINC, PSIZE, MSIZE, PL, and PFCTRL
in the DMA stream x configuration register, as seen in figure A.9.

2. Setting the base address of the memory through the DMA stream x memory 0
address register, as seen in figure A.10.

3. Setting the base address of the peripheral data register through the DMA stream
x peripheral address register, as seen in figure A.11.

4. Setting the number of data items to transfer using the DMA stream x number of
data register, as seen in figure A.12.

5. Selecting the input DMA request through the DMAMUX request line multi-
plexer channel x configuration register, as seen in figure A.13.

6. Enabling the DMA transmit stream through the SPI configuration register 1, as
seen in figure A.16.

7. Setting the bits: TCIE, and TEIE in the DMA stream x configuration register, as
seen in figure A.9.

8. Enabling the alternate function GPIOs controle through the SPI configuration
register 2, as seen in figure A.17.

9. Enabling the serial peripheral through the SPI/I2S control register 1, as seen in
figure A.18.

The block target file method Start initializes the SPI peripherals and the chip select
pin, by calling the functions generated by the BlockTypeSetup method. Within the
TLC code of the block target file method Outputs, the data of the input of the Simulink
block (uint8_t vector) is copied to the configured base memory address. Afterward
the CSTART bit of the SPI/I2S control register 1, seen in figure A.18, is enabled to

start the DM A master transfer. The block target file method Terminate deinitializes the
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configured DMA and SPI peripheral.
The SPI_DMA_Transmit block and its block mask is seen in figure 5.21.

Block Parameters: (<]

MSFunction (mask) (link)

s ; 2| SPI_DMA_Transmit

max. Byte to transmit |20

CS GPIO Port | GPIOE

CS GPIO Pin | GPIO_PIN_7

Figure 5.21: SPI_DMA_Transmit block and its block mask

In the block mask is defined which SPI peripheral, which DMA controller, which DMA
stream is used for sending and which for receiving, as well as the maximum number

of bytes that are transmitted. Additionally, a chip select pin can be selected.

SPI_DMA_Receive

When explaining the SPI_DMA_Receive block it is useful to refer to the
SPI_DMA_Transmit block.

The differences are that during the BlockTypeSetup block target file method the two
created files are called spi_dma_receive.h and spi_dma_receive.c. Their
content is similar to the files of the SPI._ DMA _Transmit.

One difference is for example that during initialization the the RXDMAEN instead of
the TXDMAEN bit of the SPI configuration register 1 A.17 is set.

The block target file method Outputs copies the data received by the SPI peripheral
using the DMA controller to the (uint8_t vector) output of the Simulink block.
The SPI_DMA_Transmit block and its block mask is seen in figure 5.22.
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Block Parameters: (]

MSFunction (mask) (link}

Parameters

5Pl |5 -

DMA | 2 -

SPI_DMA_Receive  [» Stream 2 2

max. Byte to receive 15

CS5 GPIO Port | GPIOE -

CS GPIO Pin | GPIO_PIN_7 -

Figure 5.22: SPI_DMA_Receive block and its block mask

In the block mask is defined which SPI peripheral, which DMA controller, which DMA
stream is used for receiving, as well as the maximum number of bytes that are received.

Additionally, a chip select pin can be selected.

DMA_flag_handler

The block DMA_flag_handler is implemented to reset the TCIF bit in the DMA low
interrupt status register, as seen in figure A.14. This is needed for the DMA interrupt
implementation.

The block implementation uses only the Outputs block target file method. In the TLC
code of the Outputs method, the interrupt flags transfer complete and transfer error are
reset by the CTCIF and the CTEIF bits, as seen in figure A.15.

The Simulink block has two one-dimensional outputs of type uint8_t. The first
output returns 1 if the transfer complete is set, the second output returns 1 if the transfer
error is set. If the flags are not set, the outputs return 0.

The DMA_flag_handler block and its block mask is seen in figure 5.23.
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Block Parameters: (%

MSFunction (mask) (link)

> Parameters

DMA_flag_handler

DMA |1 -

> Stream |5 -

Figure 5.23: DMA_flag_handler block and its block mask

In the DMA_flag_handler block, the DMA controller and the DMA stream are speci-
fied.

The use of the DMA_flag_handler block is especially useful within a Function-Caller
subsystem that is triggered by the corresponding DMA stream interrupt. The inside of
such a Function-Caller is shown in figure 5.24.

fO

function

DMA_flag_handler

» Error_Handler

DMA flag reset

Error-Handler

SPI_DMA_Receive

MPUG500 Sensor Data

SPI reveive Data via DMA

Figure 5.24: DMA_flag_handler block used inside of a Function-Caller

93



5 Software implementation

The second output returns if the transfer error flag is detected. The output is routed
to the Error_Handler block. This is done to stop the firmware if a transfer error is
detected.

Error_Handler

The Error_Handler block implementation uses only the Outputs block target file
method. If the input of the Simulink block is not equal to 0, the function calls the
C-project error function. The block does not have a mask, because there are no param-

eters that have to be set. The Error_Handler block can be seen in figure 5.24.

EXTI_flag_handler

The EXTI_flag_handler block implements the block target file methods Start and Out-
puts. The code generated by the Start method configures the input pin, selected by
the mask, as a GPIO input, using no pull-resistor. Afterward, it configures the cor-
responding EXTT interrupt to the selected GPIO pin. In the Outputs method, the
corresponding interrupt flag is reset. The EXTI_flag_handler block, similarly to the
DMA _flag_handler block, is placed in the Function-Caller subsystem triggered by the
EXTI interrupt.

The EXTI_flag_handler block and its block mask is seen in figure 5.25.

Block Parameters: EXTI_IRQ_Flag reset (]

MSFunction {mask} (link}

Parameters
EXTI_flag_handler PO Port | GPIOE
GPIO Pin  GPIO_PIN_8

EXTI Line |8

EXTI_IRQ_Flag reset cancel Help

Figure 5.25: EXTI_flag_handler block and its block mask
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In the block mask the GPIO port, the GPIO pin, and the EXTI line number is defined.

GPIO_Get_Input

The GPIO_Get_Input block implements the block target file methods Start and Out-
puts. In the method Start, the configuration of the GPIO pin is done.

The Start method reads the value of the IDR bit of the GPIO port input data register,
seen in figure A.19. This bit has the value of the corresponding pin. The value is
returned by the Simulink output.

The GPIO_Get_Input block and its block mask is seen in figure A.19.

Block Parameters: GPIO_read_Input [ ]

MSFunction (mask)

Parameters

GPIO Port | GPIOA -
GPIO Pin | GPIO_PIN_O -
GPIO_Get_Input > GPIO Mode | GPIO_MODE_INPUT -
GPIO Speed | GPIO_SPEED_FREQ_LOW -
GPIO OutputType | GPIO_OUTPUT_PUSHPULL -
GPIO_read_Input GPIO Pull | GPIO_PULL NO ~
GPIO Alternate | GPIO_AF_0 -

Cancel Help
Figure 5.26: GPIO_Get_Input block and its block mask

Within the block mask the configuration of the GPIO pin can be done.

ADC_DMA_Data_request

The ADC_DMA_Data_request block is used to start the ADC DMA transfer. The
block implementation is based on the example ADC DMA implementation [90].
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The block is implemented by the block target file methods BlockTypeSetup, Ini-
tializeConditions, Outputs, and Terminate. @A adc_dma_request.h and a
adc_dma_request . c are created in the BlockTypeSetup method. The header in-
cludes headers required for the ADC implementation, such as the adc . h header, that
is generated by the STM32CubeMX project.. A global array is also defined, the length
of the array can be set by the input mask of the block. In the adc_dma_request.c
file the callback functions of the ADC DMA IRQ handler are implemented. During the
InitializeConditions method, an ADC calibration is performed as in [90]. The Outputs
method implements the ADC DMA one shot, also performed as in [90]. The Terminate
method deinitializes the ADC peripheral.

Figure 5.27 shows the ADC_DMA_Data_request block and the corresponding block

mask.

Block Parameters: Level-2 MATLAB S-Function2 (]

MSFunction (mask) (link}

Parameters

ADC DMA Data request

ADC Periphery |1

Size of DMA Data Buffer 10

[ ox | ol [ s

Figure 5.27: ADC_DMA_Data_request block and its block mask

Within the block mask the ADC peripheral and the data size of the DMA transfer are
specified.

ADC_DMA ISR

The ADC_DMA_ISR block is used to read the recorded DMA values of the ADC pe-
ripheral inside the Function-Caller subsystem, which is triggered by the DMA, which
is configured to the ADC. The block is implemented using the Outputs method. In it,
the ADC DMA interrupt handler is called, as in the example ADC DMA implementa-
tion [90]. If the DMA transfer is completed, the recorded ADC values are copied from
the DMA memory to the Simulink output.
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Figure 5.28 shows the ADC_DMA_ISR block and the corresponding block mask.

Block Parameters: (]
MSFunction (mask) (link)
ADC_DMA ISR »
—_— —_— ADC Periphery |1
Size of DMA Buffer |10

Figure 5.28: ADC_DMA_ISR block and its block mask

Within the block mask the ADC peripheral and the data size of the DMA transfer are
specified.

MPUG6500_DATA_REQUEST

The MPU6500_DATA_REQUEST block optimizes the time performance of the sen-
sor data requeset of the MPU6500. The block is a lightweight version of the
SPI_DMA_Transmit block 5.21. For the MPU6500_DATA_REQUEST block only
the target file method Outputs is implemented. In this method, a constant uint8_t
array of 15 B is transmitted via SPI unsing the DMA. The implementation of the Out-
puts method is like the Outputs method of the SPI_DMA_Transmit block. Except that
the data that are sent via DMA do not have to be copied from the Simulink block in-
put into the configured DMA memory area. The data to transmit for the sensor data
request are already in the configured DMA memory at each call. That reduces C; of 7;
by 42 us.

Figure 5.29 shows the MPU6500_DATA_REQUEST block and the corresponding
block mask.
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Block Parameters: MPU6500 get Data (=]

MSFunction {mask) (link)

Parameters
SPI 5
MPU6500 DATA REQUEST DMa |2

TX Stream |3
RX_Stream 2

C5 GPIO Port | GPIOE

CS GPIO Pin | GPIO_PIN_7

MPUG500 get Data
Cancel Help

Figure 5.29: MPU6500_DATA_REQUEST block and its block mask

The block is configured like the SPI_DMA _Transmit block 5.21.

5.6 Mapping of the peripheral devices

The basic peripheral configuration of the STM32MP1 is done by the configuration tool
STM32CubeMX.

STM32CubeMX is a microcontroller and microprocessor configuration tool, that uses
a graphical user interface. After the graphical configuration the corresponding ini-
tialization codes for the Cortex-M processor are generated. The graphical interface
allows the configuration of peripherals like GPIOs or Universal Synchronous/Asyn-
chronous Receiver Transmitter (USART) interfaces, the system clock, memory con-
figuration and middleware stacks like Universal Serial Bus (USB) or TCP/IP. Addi-
tionally STM32CubeMX generates a partial Linux devicetree for the Cortex-A during
generation. [91]

Required peripherals are derived from the requirements of the Simulink target and
requirements of the example application.

The Simulink target requires a timer. This triggers an interrupt after a configured time,
which calls the model. To select this timer, the existing timers of the STM32MP1 are
inspected first.

The STM32MP1 MPU has 14 timer units, if the low power timer and the realtime
timer are not considered. These timers are divided into three categories, seen in ta-
ble 5.1. [24]
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Advanced-control timers General-purpose timers Basic timers
TIM2, TIM3, TIM4, TIMS,
TIM1, TIMS TIM12, TIM13, TIM14, | TIM6, TIM7
TIM15, TIM16, TIM17

Table 5.1: Timers available on the STM32MP1 MPU

Advanced-control timers are equipped with a 16 bit counter and a 16 bit pro-
grammable prescaler. The maximal number of independent channels is 6. These
independent channels can be driven in Input Capture, Output Capture, edge and
centering aligned PWM generation and One-pulse mode. The timers can be used
with Interrupts or DMA for the events: counter overflow/underflow, counter ini-
tialization,counter start, counter stop, Input capture, Output Capture and break
inputs. [24]

General-purpose timers are equipped with a 16 bit or 32 bit counter and a 16 bit
programmable prescaler. The maximal number of independent channels is 4.
These independent channels can be driven in Input Capture, Output Capture,
edge and centering aligned PWM generation and One-pulse mode. The timers
can be used with Interrupts or DMA for the events: counter overflow/underflow,
counter initialization,counter start, counter stop, Input capture, Output Capture
and break inputs. [24]

Basic timers are equipped with a 16 bit counter and a 16 bit programmable prescaler.
These timers have only one channel. These timers can be used to trigger a
Digital-to-Analog Converters (DAC)s. The timers can be used with the Inter-

rupt event: counter overflow. [24]
To leave as many options open as possible for the firmware generated by Simulink, one
of the basic timers is selected to call the model step. The basic timers are sufficient for

this task. Since the basic TIM6 in the default STM32CubeMX project [92] is mapped
to the Cortex-A7 processor, the unused TIM7 is selected.

The default configuration file is used as the base configuration. This has the advantage
that the configuration of, for example, the DDR, HSEM, IPCC, Independent Watch-
DoG (IWDG)s, system clock and much more are already done.

Figure 4 shows how many pins are occupied by the default configuration.
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Figure 5.30: Default STM32CubeMX Configuration of the STM32MP157C-DK2

All pins that are grayed out can still be configured.

The peripheries used in the example application can be derived from the of the existing
“Balance Car daughterboard” [39].

To give an overview of the existing hardware components that need to be connected
to the STM32MP1 by the “Balance Car daughterboard”, a summary of the hardware

components used in this project follows.
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Gyroscope and accelerometer

The 3-axis gyroscope and the 3-axis accelerometer sit together in one chip. The used
sensor type is the MPU6500. Gyroscope sensors and acceleration sensors can be
programmed for different scale ranges. The sensor can communicate via an Inter-

Integrated Circuit (I2C) or an SPI communication interface. [93]
Hall encoder

The Hall effect describes a voltage generated in a magnetic field, perpendicular to a
current flow. Hall effect proximity sensors detect magnetic field changes caused by the

movement of a metallic object. [94]
In figure 5.31 the measured hall signals are shown in a clockwise direction. In fig-

ure 5.32 the measured signals are shown counterclockwise. The rotation speed is cal-
culated from the periodic duration of one signal. It is seen that the direction of rotation
can be taken from the second sensor signal. If the edge of the blue signal rises while
the pink signal has a low level, the direction of rotation is clockwise, if the pink signal

has a high level at the time of the rise of the edge of the blue signal, the motor rotates

counterclockwise.
134V
114V
9.36 V
736V
Lt
5.36V
3.36V
™ 136V
2
= -640 mV
A -2.64 V
-3/00 ms -4.00 ms -3.00 ms -200 ms -1.00 ms 00s 100 ms 2.00 ms 3.00ms 4.00 ms 5.00 ms 4

Figure 5.31: Hall signal clockwise
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134V

114V

£ l 936V
M w 738V

336V

336V

™™ 136V
2

= -640 mV

i -2.64V

-5.00 ms -4.00 ms -3.00 ms -2.00 ms -100 ms 005 1.00ms 2.00 ms 3.00 ms A4.00 ms 5.00 ms 2

Figure 5.32: Hall signal counterclockwise

Motor driver

The TB6612FNG motor driver is mounted on the board and is suitable for supplying
two Direct Current (DC) motors with energy. The TB6612FNG is controlled by two
input lines, a standby line, and a PWM signal. The two input lines enable the direction
settings (clockwise and counterclockwise), as well as short braking and a stop mode.

The standby line enables to put the motor controller in a standby mode. [95]

Motor

The motors installed in the self-balancing robot are 3 W DC motors. Their drive torque
is amplified by a gearbox with a ratio of 1:30. [96]

A image of the motor with its gearbox is seen figure 5.33.
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Figure 5.33: DC motor with speed reducer [96, p. 29]

Ultrasonic sensor

The ultrasonic sensor type HC-SR04, shown in figure 5.34, is a contactless distance

sensor, which has a measuring range from 2 cm to 4 m. [97]

Figure 5.34: Ultrasonic sensor

Balance Car daughterboard connectors

Table 5.2 shows connectors of the “Balance Car daughterboard”, these are mapped to
the peripheries of the STM32MP1 in the following steps.

In red, the table shows pins that belong to the power supply. In light green are the pins
that belong to the motor interface. In orange are shown Speed encoder interface pins.
In purple, the pin of the infrared receiver is shown. In dark gray are the pins of the
Wireless Local Area Network (WLAN) and Bluetooth interface. The blue pins are the
connection to the ultrasonic sensor. The VIN_ADC pin is shown in dark green. Light

gray are the pins that are not connected.

Some of the pins from table 5.2 must be assigned to fixed pins of the STM32MP1I.
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I | VU NT || B 2 |MESPREN |
| Motor interface | RO 3 Bl ¢4 | MTR PWMA \
| Speed encoder interface | | MTRR_N | 5 BN 6 | MIRRP |
| Gyro & Accel interface | | MIRL_P | 7 EE 8 | MIRLN |
Ve | ESP32_CMDS | 9 Ml 10 | MIRSTBY \
| WLAN & Bluetooth interface | INECSCEOE ' I
TSR | MTRR A | 5 B 14 [OMIRRB |
VSOOI | MTRL A | 15 W 16 [IMTRLB |
| MPU_CS_n | 17 Ell 18 | MTRPWMB \
| MPUSCL_SCLK | 19 |l 20 | MPU_SDA_SDI |
| MPU_ADO_SDO | 21 [l 22 | MPU_FSYNC \
R > BN > EEH
[TRIGE | 25 W 2 [CECHOL |

| ESP32_UARTOTX | 27 [l 28 | ESP32_UARTORX |

KX

]
°

CosGRON ' BN : | | | ESP32_UARTO_CTS | 31 [l 32 | ESP32_UARTORTS |
VNEPCONE C BN ¢ | | | ESP32_CMDO | 33 M 3¢ [WESP321CMDA4 \
| | s Wl 6 | | | ESP32_CMDI | 35 M 36 [ESP32ICMDS |
| | 7 Hl 8 | | | ESP32_CMD2 | 37 I 38 [ESP32ICMDG |
| | o Wl 10 | ESP32_CMD3 | 39 J 20 [NESP32ICMD7 |

Table 5.2: Pin assignment of the Balance Car Daughterboard (cf. [39])

These are the powersupply and the ground pins. Some of the units available on the
“Balance Car daugtherboard” are not to be implemented in the sample application.
These devices are the infrared receiver and the WLAN and Bluetooth interface. The
pins belonging to these units are therefore not mapped to the STM32MP1 and remain
not connected.

During the mapping, it is tried to assign the pins to the Arduino connectors if it is
possible because they are the main connection of the MPU to the connection board.
Other connections that cannot be assigned to the Arduino connectors are mapped to
GPIO connectors CN2 [98].

Mapping the motor driver

The advanced timer TIM1 is selected as timer peripheral for the tow PWMs. The se-
lected PWM channels 3 and 4 are connected to the Arduino connectors. The remaining
inputs of the motor driver are connected to GPIO pins that are configured as outputs.
These GPIO pins are also located on the Arduino connectors.

The assignment can be seen in table 5.3.
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MTR_PWMA | TIM1 Channel 3 | PWM PE13
MTRR_N GPIO Output PD14
MTRR_P GPIO Output PEI0O
MTR_PWMB | TIM1 Channel 4 | PWM PE14
MTRL_P GPIO Output PE9

MTRL_N GPIO Output PD1

MTR_STBY | GPIO Output PA12

assignment can be seen in table 5.4.

Mapping the gyro and acceleration sensor

Table 5.3: Mapping the pins of the TB6612FNG to the peripheries of the MP1

For the MPU6500 the SPI interface SPIS is selected. The pins of SPIS are located on
CN2. The remaining GPIOs are mapped to GPIO pins on the Arduino connector. The

MPU_INT GPIO Input PES
MPU_CS_N GPIO Output PE7
MPU_SCL_SCLK | SPI5 SCK PF7
MPU_SDA_SDI SPIS MISO PF9
MPU_ADO_SDO | SPI5 MOSI PF8
MPU_FSYNC GPIO Output PE1

Mapping the hall sensors
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Table 5.4: Mapping the pins of the MPU6500 to the peripheries of the MP1

Two timers of the type general-purpose timer are selected for the two hall sensors. For
the hall sensor on the right motor the timer peripheral, TIM4 channel 4 is selected.
This is located on the Arduino connector. For the hall sensor on the right motor, timer

peripheral TIM2 channel 2 is selected. The corresponding pin is located on CM2. The
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second outputs belonging to the respective sensors are assigned to the GPIOs of the

Arduino connector configured as inputs. The assignment can be seen in table 5.5.

MTRR_A TIM4 Channel 4 | Input Capture | PD15
MTRR_B GPIO Input PG3
MTRL_A TIM2 Channel 1 | Input Capture | PG8
MTRL_B GPIO Input PH6

Table 5.5: Mapping the pins of the hall sensors to the peripheries of the MP1

Mapping the ultrasonic sensor

For the ECHOO pin of the ultrasonic sensor, the general-purpose timer TIMS is se-
lected. A pin on the CN2 belongs to the assigned channel 2 of TIMS. The GPIO pin
needed for TRIGO is assigned to a pin on the Arduino connector. This GPIO pin is

configured as an output. The assignment can be seen in table 5.6.

ECHOO TIMS Channel2 | Input Capture | PH11
TRIGO GPIO Output PE11
Table 5.6: Mapping the pins of the ultrasonic sensor to the peripheries of the MP1
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Mapping the voltage measurement

The pin where the battery voltage can be measured is assigned to the ADC1 peripheral.
The selected input of the channel is the single-ended input 6, which is located on the

Arduino connector. The assignment can be seen in table 5.7.

VIN_ADC ADCI1 IN6 Single-ended | PF12

Table 5.7: Mapping the pin of the voltage mesurement to the peripheries of the MP1

Device tree

Since the peripherals mapped in section 5.6, except the GPIO peripherals, must be
assigned according to [14], it is necessary to compile the device tree [99] generated by

STM32CubeMX according to [100] and load it into the Linux OS.
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5.7 Implementation of real-time firmware

In this section, the implementation of real-time software for the controller of the self-
balancing robot, running on the Cortex-M4, is described using the embedded coder in
MATLAB Simulink.

Model based implementation

This section describes the development of the real-time firmware for the control of
the self-balancing robot. The development is done by using model-based design. For
this purpose, a Simulink model is created. The embedded coder, the developed file
customization template, and the developed Simulink blocks are used. In addition,
some of the Simulink blocks from [6] are used.

In the following, the developed Simulink model is described. The overall view of the

Simulink model is shown in figure 5.36.

Theta filtered / ©

; Thetaraw/
_ PD(z) P Manipulated variable

Target angle

Gyro-y balance / (°/s)
Discrete PID Controller

Distance / cm

Bias/® Battery Voltage /

Wheel Speed vector / km/h

b
4
Gyrozum ! (1s) >
4
4
>

Theta filtered / °

Figure 5.35: Overall view of the self-balancing robot Simulink model

The Simulink model shown in figure 5.36 was designed based on figure 5.62.

The target angle represents the reference variable w. After the controller block the
manipulated variable can be seen. The controlled variable of the subsystem that is
feedback is the theta filtered signal. Figure 5.36 shows the contents of the main sub-
system from figure 5.36.
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The content of the main subsystem is divided into 6 subsystems. To give a general
overview, the “Motor controller” subsystem forms the actuator and the “Get MPU6500

Sensor Data and Calculate Theta” subsystem the measuring device.

Inizialisation of MPU6500

The content of the “Inizialisation of MPU6500” subsystem, seen in figure 5.37, has the
task to initialize the MPU6500.

A
3\\
L4 >0 >
-
|Z\ sensor initialized Register Init MPU6500

Sensor initialized

Figure 5.37: Subsystem: “Inizialisation of MPU6500”

An increasing sequence of numbers is generated by a counter, which is used to write
register settings in the “Register Init MPU6500” subsystem at specified points in time.
The counter increments every 10 ms. After 1.5 s the initialization is finished by the
step function. The “Register Init MPU6500” subsystem is shown in figure 5.38. In
this subsystem, the input signal of the counter is compared by the equal block with the
mapped values. If the value and the counter signal are equal, the triggered subsystem
connected to the equal block is executed. In the triggered subsystems, the registers of
the MPU6500 are configured, according to [101]. This is done by transmitting data
using SPI. The SPI transmission is done by using the SPI_DMA_Transmit block 5.21.
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Figure 5.38: Subsystem: “Register Init MPU6500”
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Get MPU6500 Sensor Data and Calculate Theta

The subsystem “Get MPU6500 Sensor Data and Calculate Theta” is divided into the
subsystems “Receive MPU6500 Data” and “Calculate robot angle”, seen in figure 5.39.
The task of the subsystem ‘“Receive MPU6500 Data” is to read out the data of the
MPU6500 as they are available. The task of the subsystem “Calculate robot angle” is
to calculate the tilt angle 6, of the robot.

——.

Thetaraw / °

accel_data(x,y,z) accel_data(x.y,z)

Gyroy balance / (°/s)

Gyro y balance / (Is)

Gyro z turn / (°ls)

Gyroz tum/ (°fs)

gyro_data(xy.2) |

gyro_data(x.y.z)

P Sensor initialized
Theta fitered /°

Theta filtered / °

Calculate robot angles

Receive MPU6500 Data

(&S

Sensor initialized

Figure 5.39: Subsystem: “Get MPU6500 Sensor Data and Calculate Theta”

Figure 5.40 shows the contents of subsystem ‘“Receive MPU6500 Data”. To receive

the sensor data 3 interrupts are used.
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ARM Cortex-M4 STM32MP1 ARM Cortex-M4 STM32MP1
IRQ IRQ
EXTI8_IRQHandler DMA2_Stream3_IRQHandler

function
0 v

function()

EXTI8 Function-Call

Subsystem -
4 DMA2_Stream3 Function-Call
Subsystem
ARM Cortex-M4 STM32MP1
IRQ
DMAZ2_Stream2_IRQHandler
accel (x,,2)
function() - accel_data(x,y.z)
MPU6500 Sensor Data > P Inl
[ [
gyro (xy.2)
DMAZ2_Stream2 Function-Call Rate_Transition
gyro_data(x,y,z)
Subsystem

MPUB500 data processing

Figure 5.40: Subsystem: “Receive MPU6500 Data”

The EXTT interrupt detects, when data is available in the MPU6500 sensor, by detect-
ing the MPU_INT pin signal of the sensor.

Inside the EXTI Function-Call subsystem, the EXTI IRQ status flag is reset using the
EXTI_flag_handler block 5.25, and a data request is transmitted via SPI using the
MPU6500_DATA_REQUEST block 5.29. The transmission of the data request trig-
gers a DMAZ2 Stream3 transmission complete IRQ. The corresponding interrupt status
bit is reset by the DMA_flag_handler block 5.23 in the Function-Call subsystem of the
DMAZ2 Stream3 IRQ. After the SPI data, sent by the MPU6500 sensor, is received by
the DMA?2 stream?2, the corresponding IRQ is triggered.

In the Function-Call subsystem of the DMA?2 Stream?2 IRQ, the corresponding inter-
rupt status bit is reset by the DMA_flag_handler block 5.23 and the received sensor
data is returned by the SPI_DMA_Receive block 5.22. The sensor data is fed into the
“MPU6500 data processing” subsystem via the rate transition block. The content of
the “MPU6500 data processing” subsystem is seen in figure 5.41.
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The figure shows how the raw data of the sensor is converted into data type int.

According to [101] every acceloration and gyro values is stored in a 16 bit register.

To transfer these values through a SPI running with a 8 bit data width, the values are

seperated in a high byte and a low byte. The high byte of the value is shifted 8 bits to

the left and is then combined bitwise by a or operation with the lower byte.

In the upper half of figure 5.41 the acceleration values are formed, in the lower half the

gyro values. Then a scaling factor is applied to each value. The bus signals accel(X,y,z)

and gyro(x,y,z) are fed into the subsystem “Calculate robot angle”,seen in figure 5.42.
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Figure 5.42: Subsystem: “Calculate robot angle”
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In the subsystem “Calculate robot angle”, the robot tilt angle is calculated from the
values of the bus signals accel(x,y,z) and gyro(x,y,z). The third subsystem input Sensor
init is used to feed the data processing with a constant O value during the initialization
of the MPU6500. In the upper area, the tilt angle 6, of the robot is calculated from the

acceleration value of the x axis a, and the acceleration value of the z axis a;.
0, = arctan (Z—’Z‘) (5.2)
In the middle, the gyro values gyro, and gyro, are calculated. The Sensitivity Scale

Factor Kseysiriviry = 16.4 taken from [93] is used for this. Due to the geometric arrange-

ment, the g, value must be multiplied by —1.

8
gyroy = K—y (=1) (5.3a)
Sensitivity
8yro: = & & (5.3b)
Sensitivity

In the lower half of figure 5.42, 6, and gyroy are routed into the Kalman filter.

Implementation of a Kalman filter

Since the acceleration values are strongly influenced by impacts, it is not possible to
control the robot without filtering the values of the acceleration and gyro sensor. The
measurement of the acceleration values is strongly influenced by strong changes in the
rotation speed, especially by directional changes. The angle 6, calculated from the
acceleration values is so strongly influenced by these impacts that deviations from the
actual angular position occur.

In this physical system, the redundancy of the measured values acceleration, resulting
in an angular position 6,, and gyro value gyro, can be used to apply the Kalman filter

described in section 2.11. The interrelated variables are shown in equation (5.4).

gyroy(t) = 6(1) (5.4)
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The state vector x(¢), the derived state vector x(¢) and the input vector y(¢) for the state

differential equation (2.8) are determined in equation (5.5a).

x) = | 20 (5.50)
| gyroy(1) |

e ] [eyro] [o]

i(t) = o) —[ 0 +H z(1) (5.5b)

System matrix A, input matrix B, output matrix C, feedthrough matrix D, and the
matrix of the system noise G are set up and inserted into the state-space equations,

seen in equation (5.6).

0 1] 0] 0
(1) = 0 0 x(1) + 0 u()+ | |20 (5.6)
i A i _B_ G
10 0
y(t) = 0 1 x(1) + 0 u(t) (5.6b)
C D

The state-space model is discretized. To do this, the matrices A, B, and G are trans-

formed into A,, B, and G, as seen in equation (2.11). The results are shown in equa-

tion (5.7).
A= [1 T“] , B, — H , G, - H 5.7)
0 1 0 1

The observability of the system is verified as described in section 2.11.

The rank of the observation matrix for the discretized system Sj is calculated.

To determine if the system is observable the rank of the ,observation matrix for the

discretized system S must be equal to the order of the system. [34]

The order of this system is n = 2. The result of this calculation is seen in equation (5.9).
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Sy = (5.8)

) = (5.9)

Since Rang(S%) = n, the system is observable, and the Kalman filter can be applied.

c
C-4,

Rang(Sp) = Rang (
C-Ay

To apply the Kalman filter the values of the covariance matrix of the system noise Q

and the covariance matrix of the measurement noise R have to be determined. [34]

It is assumed that the system/process noise vector z(k) is a scalar quantity.

Therefore the covariance matrix of the system noise Q will also be a scalar value.

It is assumed that the angular velocity changes by a maximum of 13—ms ~ 3ms~! within
a sample period. It is assumed that the change of the angular velocity is normally
distributed. It is assumed that the maximum velocity change is approximately to value
l-o0.

From these assumptions, the system noise Q(k) can be calculated as follows:

(k) = o2 = (3m!)* ~op /s (5.10)

For the calculation of the covariance matrix of the measurement noise R the
assumptions are met, that the noise variables do not influence each other
(Cov(vg, (k),Veyr, (k) = 0). It is also assumed that the noise does not change over
time.

From the measurement signals recorded while the robot is in the resting position, the
noise variances O'gx and ngymy can be estimated.

Figure 5.43 shows the resting position measurement signal of ;.
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i i I

Figure 5.43: Measured noise signal of the tilt angle 6y

S ————

—

From the signal it is estimated that ng ~0.8(°)%.

Figure 5.44 shows the resting position measurement signal of gyro,.

Figure 5.44: Measured noise signal of gyro,
From the signal it is estimated that Ggymy ~330u(°/s)%.

From the estimated noise variances, the covariance matrix of the measurement noise
R(k) is determined.
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R(E) = Ver(v() Var(vg, (k)  Cov(vg,(k),ve, (k)

- (5.11a)
Cov(vg,(k),ve,(k))  Var(ve,(k))
_ (o 0 ). (080 0 (5.11b)
0 Ggyp, 0 330u(°/s)? '

The parameters A;, C, O, and R are entered into the Kalman filter block [102] in
Simulink, as shown in figure 5.45.

Block Parameters: Kalman Filter o

Kalman Filter =

Estimate the states of a discrete-time or continuous-time
linear system. Time-varying systems are supported.

Filter Settings
Time domain: | Discrete-Time

Use the current measurement y[n] to improve xhat[n]

Model Parameters | Options

System Model

Model source: | Individual A, B, C, D matrices -

A: [[1Ts;01]

> y xhat > C: |[10:01]

Initial Estimates

Source: | Dialog

Kalman fllter Initial states x[0]: O

Moise Characteristics

Use G and H matrices (default G=1 and H=0)

Q: |9e-6 i /| Time-invariant Q

R: |[0.8 0; 0 330e-6] i |¥ Time-invariant R

N: |0 i |¥ Time-invariant N
OK Cancel Help

Figure 5.45: Setting up the kalman filter block
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Figure 5.46 shows the response (orange) of the Kalman filter to the noisy and disturbed

input signal (green).

Figure 5.46: Demonstration of the applied Kalman filter

Motor Controller

Figure 5.47 shows the contents of the “Motor Controller” subsystem. The task of
the“Motor Controller” subsystem is to control the motor driver.

The subsystem has the two inputs variables, the manipulated variable, and the robot
tilt angle 6,. In the upper third of figure 5.47, the interrupt block of TIM1 is shown.
The Function-Call subsystem triggered by the TIMI interrupt block resets the status
interrupt flag by using the TIM_CC_Interrupt_Config_Flag_Reset 5.18 block, and sets
the duty cycle of the two PWM outputs by using the TIM_Set_DC 5.16 blocks. The
duty cycles of the PWM are set to the amount of the manipulated variable, which is
scaled with the factor 100 before. The “Saftey STOP” subsystem checks whether the
angle 6, is greater than 60. If this is the case, a stop signal is passed to the “Motor
Driver Logic” subsystems. In addition, the MTR_STBY input of the motor controller
is switched to high level, which causes the motor controller to be put into standby

mode. The GPIO-write blocks shown on the right are taken from [6].
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ARM Cortex-M4 STM3ZMPL

IRQ

TIM1_CC_IRQHandler
Hardware Interrupt TIML

function()

In1

HE

@ > o i s

Manipulated variable

PWM
duty cycle

Function-Call
Subsystem of TIML Interrupt

GPIO-Write

Direction Motor controller IN1
mSmart
. F=Mechatronics

MTRL_INL
GPIO-Write

Safty STOP IN

Theta filtered { “STOP if | Thetal > 60°) STOP Motor controller IN2

mSmart
FaMechatronics
MTRL_IN2

Motor Driver Logic Motor Left
Safty STOP if (| Theta) > (60%)

GPIO-Write

Direction Motor controller IN2

mSmart
$aMechatronics
MTRR_IN2
GPIO-Write

STOR Motor controller IN1

sSmart
FaMechatronics
MTRR_INL

Motor Driver Logic Motor Right

GPIO-Write

Motor Standby

mSmart
$aMechatronics
MTR_STBY

Figure 5.47: Subsystem: “Motor Controller”

The content of the “Motor Driver Logic” subsystems is shown in figure 5.48.

Direction

)

Motor controller IN1

short break

Figure 5.48: Subsystem: “Motor Driver Logic”

The input signals of the “Motor Driver Logic” subsystem are the manipulated variable,
which carries the information about the direction of rotation, and the STOP signal. If
the direction is greater than zero, the motor rotates clockwise. Otherwise, it rotates

counter-clockwise.
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The logic shown in figure 5.48 is derived from table 5.8.

Input Output
IN1 IN2 PWM STBY OuUT1 ouT2 Mode
H H H/L H L L Short brake
H H L H CCW
L H
L H L L Short brake
H H H L Cw
H L
L H L L Short brake
L L H H OFF Sto
(High impedance) P
OFF
H/L H/L H/L L L Standby
(High impedance)

Table 5.8: Hardware-Software Control Function, taken from [95, p. 4]

The subsystems “Motor Driver Logic Motor Left” and “Motor Driver Logic Motor
Right” are identical except for the outputs. The outputs of the “Motor Driver Logic
Motor Right” subsystem are interchanged so that oppositely mounted motors drive in

the same direction.
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Ultrasonic sensor

The content of the “Ultrasonic sensor” subsystem is seen in figure 5.49.

GPIO-Write

Smart
“=Mechatronics

TRIGO

ARM Cortex-M4 STM32MP1
IRQ

TIM5_IRQHandler
Hardware Interrupt TIMS

function()

v
|
|
|

i1 outt

Distance / cm
[ _m Distance / cm

Outl

Function-Call Calculate Distance
Subsystem TIM5

Figure 5.49: Subsystem: “Ultrasonic sensor”

In the upper half, the GPIO-Write block [6] is toggled by a function generator. The
configured output of the GPIO-Write block is connected to the TRIGO pin of the ultra-
sonic sensor. According to [97], the ultrasonic sensor returns a high-level pulse after
the sensor was triggered. The measured distance is calculated from the time taken by
the high-level pulse. This is done by equation (5.12):

d— Inl * Vsound (5.12)
2

The distance is represented by d, time of the high-level pulse is represented by #,;, and
the sound velocity is represented by vy,,,q (according to [97] Vypuna = 340ms™ ).
The ECHOO pin, at which the high-level pulse occurs, is connected to the configured
input of the TIMS. The interrupt block, corresponding to TIMS, is seen in the lower
half of figure 5.49. Inside the Function-Call subsystem of the TIM5 hardware interrupt
block, the TIM_Get_Counter block 5.19 is used to reset the interrupt status flag and to
return the counter value. The counter value, returned by the TIM_Get_Counter block,
is passed to a MATLAB function, which allows every second value to pass. This
is necessary because the first of each two interrupts ist triggered by the rising edge
of the high-level pule and therefore has no information about the length of the high
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level pulse. The output of this MATLAB function is the output of the Function-Caller
subsystem. The signal that has the information of the counter value is converted in the
subsystem “Calculate Distance” into distance in cm.

To convert the counter value into a distance, the frequency of a counter tick fcg .,
must be known. The prescaler is used to specify that fcg,.,, is 1 MHz. Since the clock
frequency in front of the prescaler fck,. is 208.87 MHz, the prescaler is set to 208 — 1
according to equation (A.1). Now, according to equation (5.12), the factor K., for
the conversion from counter value to distance in cm can be determined. The result is
Keomy = 182

Figure 5.50 shows the required STM32CubeMX configuration.

v Counter Settings

Prescaler (PSC - 16 bits valus) 208-1 ]

Counter Mode Up

Counter Period (AutoReload Register - 32 bits value ) E5535

Internal Clock Division (CED) Mo Division

auto-reload preload Disable
w Trigger Output (TRGO) Parameters

Master/Slave Mode (MSM bit) Disable (Trigger input effect not delayed)

Trigger Evert Selection TRGO Reset (UG bit from TIMx_EGR)
w Input Capture Channel 2

| Polarity Selection Both Edges ]

1 Selection Direct

Prescaler Division Ratio Mo division

Input Filter (4 bits valus) 4

Figure 5.50: STM32CubeMX configuration of TIMS

The selected settings are framed in red.
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ADC Battery Voltage

Figure 5.51 shows the contents of the “ADC Battery Voltage” subsystem.

Tt
+|H+ul+ trigger ADC Data request

ADC Data request
IARM Cortex-M4 STM32MP1 Subsystem

IRQ

DMA2_Stream4_IRQHandler
Hardware Interrupt DMA2 Stream4

function() (]
ou| ! o1 B
(D (I Battery

K-ADC Voltage

Figure 5.51: Subsystem: “ADC Battery Voltage”

The ADC_DMA_Data_Reqest block 5.27 is a triggered subsystem. This triggered sub-
system gets triggered at the rising edge of the function generator. Inside the Function-
Caller subsystem of the DMA triggered interrupt, the ADC_DMA_ISR block 5.28
calls the ADC DMA interrupt handler and returns the recorded ADC values to the
model. After the rate transitions block a mean value of the recorded ADC values is
calculated.

Kapc is calculated from the resistance values Ry6 and R47 of the voltage dividers on the
self-balancing daughter board [39], the ADC resolution ADC,,s, which is configured
to 16 bits, and the maximum ADC voltage Vgrgr = 3.3V [24]. The calculation is based
on Kirchhoff’s mesh analysis [103]. Resulting from this the factor K4pc is calculated,

seen in equation (5.13).

VREF R4+ Rag
ADCeg Ry

Kipc = ~192.85uV (5.13)

The battery voltage Vpc v 1s calculated as follows:
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VDC_IN = KADC -ADC_value (5. 14)

Figure 5.52 shows the voltage divisor.

VDC_IN

R47
13.3K

VIN_ADC

R46
4.7K

Figure 5.52: Voltage divisor [39, p. 6]

In figure 5.53 the STM32CubeMX setting for the configuration of the ADC is shown.

126



5 Software implementation

~ ADCs Common_Settings

Mode Independent mode
~ ADC_Settings
Clock Prescaler Asynchronous clock mode divided by 2
Rasolution ADC 12-bit resclution
Scan Conversion Mods Disabled
Corntinuous Conversion Maode Disabled
Discortinuous Conversion Made Disabled
End Of Conversion 5 election End of single conversion
Owerrun behaviour Owerrun data overwritten
Conversion D ata Management Mode DMA One Shot Mode
Low Power Auto Wait Disabled
~s ADC_Regular_ConversionModea
Enable Regular Conversions Enable
Left Bit: Shift Ma bit shift
Enable Regular Oversampling Disable
Murnber Of Conversion 1
External Trigger Conwversion Source Regular Conwversion launched by software
Extarnal Trigger Conversion Edge Mona

» Rank 1
Figure 5.53: STM32CubeMX configuration of ADCI1

In figure 5.54 the STM32CubeMX setting for the configuration of the DMA used with
the ADC is shown.

DMA Request
ADC1 DMAZ Stream 4 Peripheral Ta Mermory Low

- DMA Request Settings

Peripheral Memary
Mede |Marrmal v| Increment Address O -]
UsaFifo 0O Threshald | Data Width |Ha|fWord vl |Ha|fW0rd LV |
Burst Size | | | |

Figure 5.54: STM32CubeMX configuration of the DMA for ADC1

Hall encoders

Figure 5.55 shows the contents of the “Hall encoder” subsystem.
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ARM Cortex-M4 STM32MP1

IRQ

TIM4_IRQHandler
Hardware Interrupt TIM4

)
y n
all_signa
1 oy >l
‘Wheel Speed left / km/h

ARM Cortex-M4 STM32MP1 In2

Wheel Speed vector /
kmh

‘Wheel Speed right /
ki

Calculation of the:

IR
? wheel Speed le
TIM2_IRQHandler

Hardware Interrupt TIM2

out] — I

N3 outl

in2

Calculation of the

. wheel Speed right
.7.5.

Figure 5.55: Subsystem: “Hall encoders”

In figure 5.55, on the left, you can see the interrupt blocks of the timers configured as
input Capture/Compare. Within the Function-Caller subsystem, the TIM_Get_Conter
block 5.19 is used to measure the pulse duration at hall encoder signal A. With the
GPIO_Get_Input block A.19 the level of the hall encoder signal B is detected. The
rotation speed is calculated from the hall encoder signal A. The direction is determined

from the hall encoder signal B. The hall encoder signals are shown in figure 5.56.

13.4V

114V
Signal A 9.36 V
7.36V
i
5.36V
3.36V
i
> signal B Lasv
2
= -640 mV
Y -2.64 V
-3.00 ms -4.00 ms -3.00 ms -200ms -1.00 ms 00s 100 ms 2.00 ms 3.00ms 4.00 ms 5.00 ms 2

Figure 5.56: Hall encoder signal A and B

The rotation speed and the direction are processed in the “Calculation of the wheel
Speed” subsystems. If the signal B is equal 1 a factor of -1 is added to the calculated
speed.

The speed of the wheels is calculated by the measured counter value CNT, the max-

imum motor frequency fmomr ( fmo,or ~ 4.43s7 ! [96, p 29]), the minimum pulse
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duration 7,, of signal A, which is recorded during the maximum motor frequency
(fpd =501.57 us 4.8), the radius of a wheel r,, (r,, = 0.031 m), and the time of a counter
increment fcyr must be known. fcy7 is set to 1 s, as described in section 5.7. The
timer configuration for this is seen in figure 5.57.

The speed of the wheel, when neglecting the slip, can be calculated as follows:

2'77:'r'w'f,\motor'i(pd
(CNT+ 1) -1CNT

(5.15)

Vwheel =

The conversion is calculated by the dividend Djuj; = Vyppeer - (CNT + 1). Tt is calculated
in kmh~! by:

2'7['rw'fmolor'tpd
Ient

Dyl = ~ 1558.04kmh~! (5.16)

The wheel speed right signal is multiplied by -1 because the motors are mounted in
the opposite direction. The STM32CubeMX cunfiguration for the timers is shown in
figure 5.57.

v Counter Settings

Prescaler (PSC - 16 bits walus) 208-1 ]

Counter Mode Up

Counter Period (AutoReload Register - 16 bits value ) E5535

Internal Clack Division (CKD) Mao Division

auto-reload preload Disable
~ Trigger Output (TRGO) Parameters

MasterjSlave Moda (MSM bit) Disable (Trigger input effect not delayed)

Trigger Event Sealaction TRGO Reset (UG bit from TIMx_EGR]
v Input Capture Channel 4

[ Paolarty Selection Rising Edge ]

IC Selection Direct

Prescaler Division Ratio Mo division

Input Filter {4 bits values) li]

Figure 5.57: STM32CubeMX configuration of TIM2 and TIM4

Interprocessor communication

The interprocessor communikation is done by the Simulink blocks OpenAMP-

Transmit and OpenAMP-Receive taken from [6]. Figure 5.58 shows the transmission
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of the signals Theta, Battery Voltage and Distance.

Theta / ° OpenAMP-Transmit
P inl
Battery Voltage / V
: P In2 Outl f——P
Distance / cm
P In3 Smart

wMechatronics

Figure 5.58: Transmitting IPC data

The signals are distributed within the subsystem to an array of the data type
(uint8_t) and sent to the Cortex-A7 by the Open AMP-Transmit block.
Figure 5.59 shows the receiving of the data send by the Cortex-A7.

OpenAMP-Receive P >
I
——P Inl Outl >
Smart D >
wMechatronics

Figure 5.59: Receiving IPC data

The received data array is converted in the subsystem into the 3 mapped signals P, D,
and L.

5.8 Control system for the inverted pendulum

In this chapter the main elements of the plant are analyzed. For this purpose, a mathe-
matical description of the inverted pendulum is developed. Based on this mathematical
description, the controller is implemented.

An inverted pendulum is a well-known problem in control engineering where the pen-
dulum is held in the forced unstable upper position. [104]

From the physical model of the inverted pendulum, high real-time requirements for the

system can be derived. Compared to a stable system, it requires fast and accurate angle

130



5 Software implementation

or position sensors. For this reason, the implementation of a controller for an inverted
pendulum is suitable to demonstrate the real-time capability of a system. [105]
The model of an inverted pendulum consists of a stem, which stands upright in space,

as shown in figure 5.60.

Figure 5.60: Schematic representation of an inverted pendulum in space
Because the bottom point of the stem is movable on the plane, the pendulum tilts when

the system is affected by an external force. This can be prevented by a regulation at

the installation point of the pendulum stem. [106]
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Derivation of the mechanical controlled system

Using the model in figure 5.61, equations of motion for the pendulum are formulated.
To determine the plant, the degree of freedom is restricted. This means that the left and
right wheel accelerate the robot in a straight line alonge the x-axis. The mathematical
description is done without linearization. The mass of the robot is described by m,,.
The distance between the axis of the wheels and the center of mass is given as length
[. In the figure 5.61, the center of gravity is symbolized as a sphere. In the real system,
the mass moment of inertia is determined by the shape of the robot. This shape can be
approximated as a cuboid.

Mass moment of inertia for a cuboid according to [107, p. 76]:

1
Jy = Em(b2 + h?) (5.17)

with b as cuboid depth and h as cuboid height. The tilt angle of the robot is seen as 6,.

Fy, and Fy, are horizontal and vertical reaction forces.
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_FWx

‘ S S SSSSSS S S S S S

Figure 5.61: Model of the self-balancing robot

Translation:
My - Xypx = Fwx — Fx (5.18a)
mp'xpx:FHx (518b)
mp'pr:FVx_mp’g (5.180)
Rotation:
Je- Oy = Fyy-1-sin Oy + Fyy - 1 - cos 6y (5.19)
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Geometry:

pr - wa - l * Sinex

pr :l'COSGX

In the following, the large-signal performance of the plant is derived.

Derivation of the time-variable function of 6,:

f(t) =06,

sy d6y
f(t)_z— X
,, d? 6y
f(t): dr2 = Ux

Derivation of the time-variable function of sin(6y):

h(t) = sin(6y)

h(r) = sin(f(1))

W (t) = cos(f(1))- f'()
H'(t) = cos(f(t))- f"(t) + (1) - f'(2) - (=sin(f(1)))
B (1) = cos(6y) - 6, — 62 - sin(6,)

Derivation of the time-variable function of cos(6,):

g(t) = cos(6x)

g(t) = cos(f(1))

g'(t) = —sin(f(r)) - f'(r)

g"(t) = —sin(f (1)) - f(t) + () - f(£) - (—cos(£(r))
g (1) = —sin(6) - 6, — 62 - cos(6,)

The time derivatives are inserted into the reflection forces.
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For Fy, considering that the geometry equation (5.20a) and the derivation equa-
tion (5.22¢) is used:

Fry = my - ipy (5.24a)
d*x,,

Frix =my- — 3 (5.24b)
dZ

Fry=m,- W(xwx —1-sin(6y)) (5.24¢)

Frix = My Ky —my - 1- 6y -cos(6y) +my, - 1- 02 -sin(6,) (5.24d)

For Fy, considering that the geometry equation (5.20b) and the derivation equa-
tion (5.23e) is used:

Fy, :mp'pr+mp‘g (5.25a)
d’z
Fyo=mp-— 2= +mp-g (5.25b)
d2
Fy,= mp-l-ﬁcos(ex) +my-g (5.25¢)
Fyxy = —my-1-6;-sin(6y) —my-1- 07 -cos(6y) +m, - g (5.25d)

Translational movement: The reaction forces equation (5.24d) is inserted into the

translation equation (5.18a).

(Mg +mp) = Fyg -y -1+ - cos(8y) —my - 1+ 6 - sin(6y) (5.26)
Rotational movement: The reaction forces equation (5.24d) and equation (5.25d) are
inserted into the rotation equation (5.19).

o 6, = (my-1)(—1- G, -sin?(6,) — - 6, - cos(8y) - sin(y) + g - sin(6,) +

Xyx-c08(6;) —1- 6, - cosz(Gx) +1- éxz -sin(6y) - cos(6y)) (5.27)

135



5 Software implementation

Using the Trigonometric Pythagoras equation (5.28a) and the Addition Theorem equa-
tion (5.28b) [108, p. 94]

sin®(x) +cos?(x) = 1 (5.28a)

sin(xy) - cos(xp) — cos(x) - sin(x2) = sin(x; —x7) (5.28b)

equation (5.27) is solved according to equation (5.29).

Gc(my - 1> +Jy) =my-g-1-sin(6,) +mp - Fp - 1-cos(6y) (5.29)

After all, kinematic relations of the inverted pendulum are described, the functional
equation 6, = f(F,y) is tried to be set up. In this case, the equations of the translational
and the rotational motion with their sin(6,) and cos(6,) terms show nonlinear behavior,
so it is necessary to eliminate their sin(6,) and cos(6,) terms first.

For this purpose, a linearization is performed. The linearization proceeds as follows:
A proportionality coefficient K, for the operating point is formed as a result of the
linearization. For this purpose, the non-linear element is converted into an equation
of the line with the aid of the Taylor series. For this purpose, the Taylor series is
terminated after the first theorem. The result is a linear equation through the operating
point. [35]
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Taylor series [108, p. 182]

n

= £(n)
1w =y 0 gy (5:30)
n=0 :

For the therm sin(x) working at the operating point x = 0:

fx) == =0+ =~ (x-0) (5.312)
flx)=x (5.31b)
It results that the proportionality coefficient Kpgnion = 6.

For the term cos(x) working at the operation point x = 0:

0 —sin(0
Flx) = CO(S’)E ) =00+ sf:( )(x—0)! (5.32a)
flx)=1 (5.32b)
It results that the proportionality coefficient K Peos(6y) = 1.

Moreover, the assumption is made that potencies of 6, or the derivatives of 8, with
higher exponent than 1 can be set to 0, since their value, around the operating point

0, ~ 0 are negligibly small.

After eliminating the nonlinear terms and the negligible potencies, equation (5.26) and

equation (5.29) yield the following equations:

Kyx(Myy +mp) = Fyp+my -1 0, (5.332)

Gc(mp-P+J) =my-g-1-O+my-1-Fpx (5.33b)

Now the relationship between 6, and the force Fy,, is determined by inserting in %,,,,.
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Afterwards for 0, the difference theorem for the second derivative is applied. [35, p. 67]

Then the transfer function of the pendulum can be determined by substituting.

bo

Gs(s) = 5.34

5(s) s2-ay+s-ay+agp ( 2)
1

b= —F——— 5.34b
" g (my+mp) (-3
ap=—1 (5.34¢)
a; =0 (5.34d)

1 bt 1 1

=(l+—-—t— 5.34

= g( +12'l+12 mw—l—mp) (5.34¢)

After the transfer function has been formulated, the stability of the system can be

investigated.

For this purpose, the characteristic equation of the system is examined. The system
has an unstable resting position if at least one zero of the characteristic equation does

not have a negative real part. [35, p. 871]

2 1(z+ v L1 1 )—1=0 (5.35a)
s+t =) 1= 35a
g 12-1 12 my+m,
1
s1 =+ (5.35b)
1 b? l 1
U120+ 12— ;)
1
5 = — (5.35¢)
1 b? l 1
U120+ 12~ mmy)

Equation (5.35b) shows that one of the zeros of the characteristic equation has a posi-

tive real part. So the system has an unstable resting position.

Since Gy is only the transfer function of the mechanical tilt moment, many unknown
transfer functions remain in the controlled system. The unknown transfer functions
are highlighted in gray in figure 5.62. The reference variable w determines how the
angle 0, should be. It is compared with the measured angle 0, at the addition point.

From the control difference (w —x) the manipulated variable y is calculated by the
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controller. The manipulated variable y is superimposed by the disturbance variable z1.
In figure 5.62 the controlled system is the multiplication of Gpyiver, Gymorors and Gg.
The controlled system outputs the controlled variable x. The controlled variable is fed

back via the measuring device Gsepsor- [35]

74}
w y X
GController > GDriver > GMotor > Gs

GSensor <

Figure 5.62: System overwiew of the self-balancing robot

Experimental analysis of the overall control system

An experimental analysis of the entire system should help to determine the transfer
function of the whole system, in order to subsequently dimension a controller for
this system. In the expirimental analysis of systems, a step function is applied to the
system at rest, while the output function of the system is measured. Afterwards the
non-parametric system can be transformed into a parametric system. The result is the

transfer function of the entire system. [35]

Figure 5.63 shows a schematic diagram of how the experimental analysis is performed.

The step function is applied to y, while the output function is recorded at X,,cq5ured-
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Z
y X
Goriver [ Gwmotor > Gs ——>»

Xmeasured
<

hl GSensor

Figure 5.63: Set up to record the step response

The self-balancing robot is held in the unstable rest position while a step function with
the peak value 0.1 is applied to the system as manipulated variable y. The manipulated
variable 0.1 ensures that the PWM is set to a duty cycle of 10% and the robot starts
moving in one direction. Since the system is not controlled, the robot tips over. During
this, the angle 6, is recorded. The resulting response X,,eqsured = System_out and the
step function = System_in are shown in figure 5.64. The step function is shown on a
scale of 100:1.
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Figure 5.64: Step response of the System recorded at a step sie of 1 ms

The MATLAB “System Identification Toolbox” [109] is used to create a transfer func-

tion from the step response. The window of the toolbox is seen in figure 5.65.
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4. System |dentification - Untitled - O >

File Options Window Help

Import data ~ Import medels ~

' Operations '

T «— Preprocess w U
Htep_response SBcar 12
Working Data
Estimate —> v
Data Views Model Views
To To
D Time plot Workspace LTI Viewer D NModel cutput D Transient resp Nenlinear ARX
[ Data spectra [1 model resids [ Frequency resp Hamm-Wienar
D Freguency function ﬂ D Zeros and poles
Step response SBcgr
Trash

Validation Data

Figure 5.65: Window of the “System Identification Toolbox”

Creating the transfer function is done by importing the step function and the system

response in the “System Identification Toolbox™, seen in figure 5.66.
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4 Import Data - O *

Data Format for Signals

Time Domain Signals ~

Workspace Variable
Input System_in

Output System_response

Data Information

Data Name response_SBear]
Start Time 0
Sample time 0.001
WMore
Import Reset
Close Help

Figure 5.66: Importing data to the “System Identification Toolbox”

In the next step, it is necessary to specify how many poles and zeros are to be calculated
by the “System Identification Toolbox”. To determine this, the system from figure 5.63
is summed up as described in [35] to form a transfer function. This transfer function

GResponse €an be seen in equation (5.38).

GResp(mse (S) = GDriver(S) : GMotor(s) - Gy (S) : GSensor(s> (5.36)

It is estimated that Ggesponse () can be approximated by a transfer function with 3 poles

and 2 zeros. This is specified in the window shown in figure 5.67.
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Yy
Model Structure Estimation Options
Model name | SB-Car
Orders and Domain
MNumber of poles | 3

Mumber of zeros | 2

#) Continuous-time

Discrete-time (0.001 seconds)

» Delay

Help Estimate | | Close

Figure 5.67: Estimation of the number of poles and zeros of the transfer function

The transfer function determined by the “System Identification Toolbox™ can be seen

in equation (5.38).

_ —493-52+8074-5—5.9-10*
- $3+7.232-52+50.97-5+58.3

GResponse (S) (5.37)

In figure 5.68, the recorded step response (green) and the step response of the calcu-

lated transfer function (blue) can be seen.
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Angle ¢
[
|

Time /s

Figure 5.68: Comparison between the recorded step response of the real system (green)
and the one calculated by the “System Identification Toolbox” (blue)

To compare the step responses of the derived transfer function with the step responses
shown in figure 5.68, the gravity, the geometry parameters, and the masses of the self-
balancing robot are inserted into the equation (5.34a). To make a comparison, the
derived function must be multiplied by a factor Krap 10 DEG = % to convert radians
into degree. The parameters insertet in the eqation are g = —9.81 ms~2, m,, = 0.090kg,

mp = 0.706kg, b =0.070m, and / = 0.1485m.

The resulting transfer function is seen in equation (5.38).

B —23.05
©0.3499 .52 —3.142

Gy(s) = Krap_ro_pEG - Gs () (5.38)

If the transfer function G)(s) is loaded with a step function that has a peak value of
2.118, it approaches the measured and the calculated step response. Seen in figure 5.69.
This comparison is shown in figure 5.69. The recorded step response is plotted in
green, the step response of the transfer function calculated by the “System Identifica-

tion Toolbox™ in blue, and the step response of the derived transfer function in red.
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Figure 5.69: Comparison between the step response recorded of the real system
(green), the one calculated by the “System Identification Toolbox™ (blue),
and the one derivated by hand for the mechanical tilting action (red)

Figure 5.69 verifies the recorded transfer function and the transfer function calculated
by the “System Identification Toolbox” with the derived transfer function of the in-

verted pendulum.

To determine the minimum required sample time for quasi-analog system control, the

step response of the transfer function has to be analyzed. [35]

For this purpose, the transfer function calculated with the “System Identification Tool-
box”, is used to determine the delay time 7;,, the compensation time 7, and the settling
time T9s. Then, the minimum required sampling time 7 is determined using the ta-
ble [35, p. 498]. The line in the table [35, p. 498] where T, > 10 applies to the analyzed
system. It follows according to the table [35, p. 498] that T < 0.1 x T, must be selected.
The step function and the determination of its characteristic values are shown in fig-
ure 5.70.
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The values 7, ~ 0.3s, T, ~ 0.9s, and Tys5 ~ 2.4 s are read off.

It follows that the minimum required sample time 7" for quasi-analog control must be
T <90ms.

Once the minimum sample time is checked, it is considered in which period new gyro
and acceleration values are recorded. From table 4.8, it is seen that the sensor values
are read in a minimum period of 997.62 us. To process each set of sensor values in
about a separate model step the sample time is set to 90 times the minimum required
sample time (7" = 1 ms).

The “Control System Toolbox™ [110] is used to design a controller for the Simulink
model shown in figure 5.71. In the model the transfer function calculated with the
“System Identification Toolbox™, is used as plant. The two step functions represent
a 1 ms puls with size 1 to disturb the plant. The plant is sampled with 7 = 1 ms by
the “Discretization” subsystems. The Controller C calculated by the “Control System
Toolbox” must regulate the disturbing pulse. The transfer function of the controller

used in the following figures can be seen in equation (5.39).

~ —0.0014829(s 4 0.6399)

N

C (5.39)

]
i

L+ N —4935% + B074s + 5.9¢04 )

c Bl g T +7.23283 + 509757 + 5835 + 1

PID-Controller Discretization1

1 1

Discretization2

Figure 5.71: Controller design in MATLAB Simulink

Figure 5.72 shows the “Control System Toolbox™ during the design of the Controller
C.
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Figure 5.72: “Controll Syste Design Toolbox™

Figure 5.73 shows the system response to the disturbance pulse.

Figure 5.73: Controller design in MATLAB Simulink

It can be seen that controller C can regulate the disturbance pulse.
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A PID controller for the self-balancing car can also be determined empirically, accord-
ing to [111]. This can be done in the real system using the external mode. The PD con-
troller parameters found in this process are P = 0.0196 D = 0.0187, and N = 28.234.
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5.9 Implementation of non real-time application

Because the implementation of the non-real-time application is not the focus of this
thesis, it will only be touched upon.

To continue using the external mode via XCP on TCP/IP, the application “Exter-
nal_mode” forms the fundament of the non real-time application. The implementation
of the graphical components of the non real-time application are performed with the
use of the Light Versantil Graphics Library (LVGL) [112]. LVGL is selected, because
it has been used in a previous project. The LVGL supports the GIMP-Toolkit (GTK)
driver [113] (GNU Image Manipulation Program (GIMP), GNU s Not UNIX (GNU)).
The GTK driver is included in the ‘““st-image-westone” [114] OS, which is running on
the Cortex-A7.

The application created is divided into two pages. The page “Slider”, seen in fig-
ure 5.74, shows 3 sliders to tune “P”, “I”, and “D” parameter of the controller. The
page “Diagram”, seen in figure 5.75, monitors “Theta”, “Battery Volage”, and “Dis-

tance”.

g omart , :
swMechatronics Slider Diagram

[l

Figure 5.74: Non real-time application: “Slider” page
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Figure 5.75: Non real-time application: “Diagram” page
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6 Verification

The requirements specifications defined in item A.l.1 are checked by the following
verification plan. The verification procedure with the corresponding tools is also de-

scribed in the plan.

The instrument used for the time-critical measurements during verification is the os-

cilloscope shown in table 4.7.

The main measurements are described under table 6.1.
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6 Verification

No./ID | Non-technical title | Verification of the requirement Tools

It is verified, whether the generated code can be integrated
into a STM32CubeMX project.

It is verified whether the firmware compiled and linked
from the code generated by using the developed coder target
within Simulink, and the code of the STM32CubeMX
project, can be executed on the Cortex-M4 core.

It is verified whether the firmware can be operated with a
sample time of 100 us.

It is verified whether the model running
on the Cortex-M4 outputs the correct
values corresponding to the

Simulink model.

STM32MPI,
. . Computer,
MATLAD Smuin
y pt. Embedded Coder,
Req_01 | Code generation Debug-tool,

Results: . .
— Build environment

for cross-compiling,
Oscilloscope,
External mode

The generated code can be integrated into
a STM32CubeMX project.

The firmware compiled from the generated code
and the STM32CubeMX can be executed on the
Cortex-M4.

The firmware can operate with a sample time of 100 us.
(Sample times of 20.83 us = 48 kHz can be achieved)

The model that is executed on the hardware
returns the correct values.

The model step is called by the TIM7 interrupt.

Tests passed.

It is verified whether the external mode via XCP
provides a correct data transfer
between the Cortex-M4 and the development

computer. STM32MP1,
Computer,
External mode Result: MATLAB Simulink,
Req_02 via XCP Embedded Coder,
The External mode via XCP transfers the data Build environment
correctly. for cross-compiling,

Network communication

Test passed.
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No./ID | Non-technical title | Verification of the requirement Tools
It is verified whether the set up build project
can compile and link the generated code from MATLAB
Simulink and STM32CuebMX.
Result: Computer,
Set up E— .
Req_03 | project build arm-none-eabi-gee
- environment The developed build project can compile and cross-compiler,
link an executable frimware from the available CMake
code sources (x.c, *.h, x.s, x.1d).
Test passed.
It is verified whether the MPU6500 can be implemented via
Simulink blocks, using the codegeneration for the Cortex-M4 core.
It is verified whether the register data of the MPU6500 are
read out from the sensor via SPI.
It is verified whether the acceleration and gyro measurement
data of the MPUG6500 is read out within 500 us.
It is verified whether the sensor outputs a tigger signal.
It is verified that the EZXSEEMIP L
Hardware Abstraction Layer (HAL) is not used. MATLAB Simulink,
Embedded Coder,
Req_04 Acceleration Results: Build env1r0nme_nt
and gyro data — for cross-compiling,
The MPU6500 can be implemented by developed Simulink blocks, Oscilloscope,
. R External mode,
using the codegeneration for the Cortex-M4 core. .
Self-balancing
. . robot
The register data of the MPU6500 are read out via SPI.
The acceleration and gyro measurement data of the MPU6500
are read out within 500 us.
The MPU6500 outputs a trigger signal.
The HAL has not been used.
Tests passed
It is verified whether the implementation of the motor control can be done by
Simulink blocks, using the codegeneration for the Cortex-M4 core.
It is verified whether the setting of the duty cycle of the PWM is done
within 100 us.
It is verified whether the direction/stop logic is working. STM32MPI,
. . Computer,
It is verified whether the HAL has not been used. MATLAB Simulink,
Embedded Coder,
Result: R .
Req_05 | Motor control Build environment

The implementation of the motor control can be done by Simulink blocks.

Setting the duty cycle of the PWM is done within 100 ps.
The direction/stop logic is working properly.
The HAL has not been used.

Tests passed

for cross-compiling,
External mode
Self-balancing
robot
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No./ID | Non-technical title | Verification of the requirement Tools
It is verified whether the implementation of the hall encoders can be done by
Simulink blocks, using the codegeneration for the Cortex-M4 core.
It is verified whether a measurement of the hall encoder value is
performed within 50 us.
It is verified whether the direction of rotation of the motor to which
the hall sensor is attached can be recorded.
STM32MPI1,
It is verified whether the HAL has not been used. Computer,
MATLAB Simulink,
Result: Embedded Coder,
Req_06 | Hall encoder Build environment
The implementation of the hall encoders can be done by Simulink blocks. for cross-compiling,
External mode
The time measurement and the detection of the direction is performed Self-balancing
within 50 us. robot
The direction of rotation of the motors to which the Hall sensors are
attached is detected.
The HAL has not been used.
Tests passed.
It is verified whether the ultrasonic sensor can be implemented via
Simulink blocks, using the codegeneration for the Cortex-M4 core.
It is verified whether it is possible to adjust when the measurement
of the ultrasonic sensor takes place.
It is verified that the acquisition of the signal returned by the
ultrasonic sensor is performed within 100 pus.
It is verified whether the HAL has not been used. STM32MPT,
Computer,
Results: MATLAB Simulink,
TS Embedded Coder,
Req_07 | Ultrasonic sensor The ultrasonic sensor can be implemented using the developed Build environment

simulink blocks.

The point in time when the ultrasonic sensor measurement should
take place can be adjusted

The acquisition of the returned value of the ultrasonic sensor is
performed within 100 us.

The HAL has not been used.

Tests passed

for cross-compiling,
Oscilloscope,
External mode,
Self-balancing
robot
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No./ID | Non-technical title | Verification of the requirement Tools
It is verified whether the implementation of the battery voltage measurement
can be done by Simulink blocks, using the codegeneration for the
Cortex-M4 core.
It is verified whether it is possible to adjust when the measurement
of the battery voltage takes place.
It is verified whether the Battery voltage value consists of the mean
of 100 values. STM32MP1,
It is verified whether the acquisition of the battery voltage is performed Computer,
within 2 ms. MATLAB Simulink,
Embedded Coder,
Req_08 | Battery voltage Result: Build environment
for cross-compiling,
The implementation of the battery voltage measurement can be done by External mode
Simulink blocks. Self-balancing
robot
It is possible to adjust when the ADC measurement takes place.
The battery voltage is measured using the average value of 100 values.
The battery voltage is measured within 2 ms
Tests passed
It is verified whethe parameters can be adjusted by using graphical
sliders displayed by the touch display.
It is verified whether model parameters can be plotted in a diagram
shown by the touch display. STM32MPI,
Tuning model Result: Computer, .
. arm-none-eabi-gcc
Req_09 | parameters via cross-compiler
Touch display Model parameters can be adjusted by using graphical sliders displayed Dei)ilg—toofl) ?
on the touch display. CMake
Model parameters are plotted via a diagram on the touch display.
Test passed.
IF must be check.ed w.hether the re.al—ume STM32MPI,
firmware complies with the real-time
requirements Computer,
q : MATLAB Simulink,
Embedded Coder,
. Result: R .
Req_10 | Real-time Control Build environment

The real-time conditions are fulfilled.

Tests passed

for cross-compiling,
External mode
Self-balancing
robot

Table 6.1: Verification plan
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Main measurements

Model sample time

According to Req_01, a model must be capable of operating with a sample time of
100 us. The model shown in figure 6.1 is used to verify this. Inside the model, a
function generator generates a rectangular function. One sample of this function has
the value 1 and the next sample has the value 0. Connecting the output of this function
generator to the GPIO-Write block allows measuring the sample time of the model
using an oscilloscope. The measured periods correspond to two model steps. Table 6.2

shows which model step times have been tested and whether the test has been passed.

GPIO-Write
D1
i >
usiiaid pomart
saMechatronics
GPIO-Out

Figure 6.1: Step Time test

Step Time | Test result

Is passed
100 ms passed
10 ms passed
I ms passed

100 us passed
10 us failed
Table 6.2: Step time test result

It is seen, that the required sample time of 100 ts can be kept, seen in figure 6.2. A

sample time of 10 us fails. The reason for this has not been investigated, it may be due
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to slow implementation of the GPIO-Write block, or the time needed to calculate the
model step.
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@ Period(1) 199982830 us  199.984112 ps 199977475 ps 200748747 ps 7712718 ns 3351362 ns 530
(@ Freguency(l) 5.0004292 kHz 50003973 kHz 49813511 kHz 50005631 kHz  19.212041 Hz 834.8332 mH. 530 )

@ Rise time(1) 63217 ns 6.38999 ns 6.1818 ns 6.5801 ns 3983 ps 67.77 ps 795
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@ v max(l) 348567V 348869V 346116V 352599V 64.83 mV 12.087 mV 265
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@ - width(1) 100011413 ps 100.012960 ps 100.008015 ps 100777168 us 7711526 ns 3347145 ns 530

@ Duty cycle(l) 50.0% 500 % 49.8 % 500 % 190 m% &m% 530

Figure 6.2: Model step time = 10 us

As seen in figure 6.3, a period of 41.66 us can also be measured. The resulting model
sample time is 20.83 us. That is equivalent to a frequency of 48 kHz, which could

make the implementation interesting for audio processing.
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Figure 6.3: Model step time = 20.83 us

External mode data transfer

Figure 6.4 shows a model, that is used to test the transmission of the external mode

via XCP on TCP/IP. For this purpose, a known random uint16_t array consisting

of 4096 elements is loaded into the look-up table. This test is performed with a sample

time of 1 ms, resulting in a data transfer of 2kB s~! which is transferred from the

Cortex-M4 via the Cortex-A7 to the development computer. After the runtime of the

external mode, the values received from the target can be compared with the values of

the known array. This can be seen in figure 6.5.
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Real-time control

During the verification of the real-time system on the Cortex-M4, the Cortex-A7 is
intentionally stressed, to show that the Cortex-M4 and the Cortex-A7 work indepen-
dently. For this purpose, several applications are started simultaneously on the Linux
operating system of the Cortex-A7. An snapshot of the utilization of the Cortex-A7
during the real-time verification of the Cortex-M4 is seen in figure 6.6.

top - 13:53:48 up 20 min, 4 users, load average: 8.61, 4.02, 2.28

Tasks: 145 total, 7 running, 138 sleeping, @ stopped, 0 zombie
%Cpu(s): 44.4 us, 54.0 sy, 0.0 ni, 0.1 id, 0.0 wa, 0.0 hi, 1.4 si, 0.0 st

MiB Mem : 428.0 total, 154.5 free, 136.6 used, 136.9 buff/cache
MiB Swap: 0.0 total, 0.0 free, 0.0 used. 257.0 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
2313 root 20 69436 21484 15344 R 104.4 4. 0:54.91 lvgl_ext_mode

1991 root 20 2008 1396 1200 R 25.

5]

<] 0:13.38 dropbear
1957 root 20 5] 47304 20140 16276 S 23.

5]

(5]

2:24.15 1vagl
3:35.44 weston
1:57.03 weston-st-egl-c

385 root 20 127312 21456 15792 5 17.
1381 root 20 103448 14988 7576 R 12.

MOMWoB
LFLINN SN S =]
O W

Figure 6.6: Deliberate stressing of the Cortex-A7 during real-time verification of the
Cortex-M4 firmware

To verify the real-time firmware on the Cortex-M4, the idle time calculated in sec-
tion 4.2 must be kept. To observe this, a GPIO pin is set at each task start and reset
at each task end. The maximum average voltage of the GPIO pin is used to derive the

idle time. This measurement is seen in figure 6.7.
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Figure 6.7: Measuring the idle time of the Cortex-M4 (preemption enabled)

The relative idle time 7;4;, of the processor is calculated as seen in equation (6.1).

VREF — Vapg

Tiare = (6.1)

VREF

The result is 7, ~ 88 %. The relative core utilization is U, ~ 12 %.

This measurement has a systematic error. This always occurs when a task with a low
priority is interrupted by a task with a higher priority. When the processor jumps back
to the task of the lower priority, the GPIO pin is not set again, so the rest of the task
processing is not covered by the measurement. To prevent this, the preemption of each
task is deactivated for the measurement. This prevents the processor from switching to
a task with a higher priority while a task is being processed. The measurement where

the preemtion is disabeld is seen in figure 6.8.
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Figure 6.8: Measuring the idle time of the Cortex-M4 (preemption disabled)

This measurement results 7;;, ~ 87 % and U, ~ 13 %. If the relative core utilization
U, and the maximum utilization Uy,,,, calculated in equation (4.1), are compared, it is
seen that:

U, ~0.12 < 0.712 = Ugyyp,-

This means that the real-time condition is met.
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7 Conclusion

The MATLAB Simulink coder target designed and implemented within this project
creates the possibility to perform model-based design on the Cortex-M4 of the
STM32MP1. With the implemented external mode via XCP on TCP/IP, parameters
of the real-time firmware running on the Cortex-M4 can be observed and tuned. While
the Cortex-M4 is executing the real-time firmware, a graphical application can be ex-
ecuted on the Cortex-A7, which can display and tune the parameters of the real-time
process.

With the Simulink coder target and the Simulink blocks, both developed in this project,
the example application control of the self-balancing robot can be implemented model-
based.

During the development of the Simulink blocks, the focus was on a hardware-related
and fast implementation. By using and modifying the ARM-Cortex-M interrupt block,
the hardware interrupts of the NVIC can be integrated into the Simulink model. By
using interrupts and DMAs within the real-time application, polling is avoided.
Thanks to existing drivers on the Linux OS running on the Cortex-A7, network and
graphic touch applications can be developed rapidly. Even the utilization of the Linux
processor does not affect the real-time application. The communication of the hetero-
geneous processors via the shared memory can be implemented as a communication
interface for the external mode via XCP.

The setup CMake project resolves the dependencies of the build process from the tem-
plate Makefile of MATLAB Simulink or the Makefile projet of the STM32CubelDE.
The controller for the self-balancing robot, created by the model-based design, can
keep the self-balancing robot in its unstable resting position. The acceleration compo-
nents resulting from changes in direction, impacts, rapid acceleration, and deceleration

can be estimated by applying the Kalman filter.
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7 Conclusion

7.1 Outlook

In future projects, the communication of the heterogeneous processors can be im-
plemented via the indirect buffer exchange mode. The data acquisition of the Hall
encoders and the ultrasonic sensor could be further optimized by a DMA-based im-
plementation. Furthermore, it would be possible to optimize the control of the self-
balancing robot by implementing a linear-quadratic controller. Through model-based
development, a control for the trajectory of the self-balancing robot can now be
planned and implemented. A graphical Linux application could also be developed

to match them.
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A Appendix

A.1 Hardware Registers

The following applies to the readability and writability of the register bits:

Symbols Meaning

rw The bit can be read and written

rc_w0 The bit is set by hardware and reset by software
rs The bit is set by software and reset by hardware
w The bit can only be written

Table A.1: Symbols indicating the readability and writability of register bits

TIMx Prescaler
9 8 7 6

12 11 10 5 4 3 2 1 0

PSC

o

o

o w w w w o o w o w w w w

Figure A.1: Prescaler Register .cf [24, p. 2127]

PSC (Prescaler): [24]
A value is programmed into the prescaler by for dividing the incoming clock

frequency. The resulting clock frequency fck,.,, is determined as follows:

fbKPSC
Jekenr PSC+1 A1)
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TIMx Auto-Reload Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR

w o w o w w w w w w w mw o w w w

Figure A.2: Auto-Reload Register .cf [24, p. 2127]

ARR (Auto-Reload Register): [24]
The Auto-Reload value is programmed into the ARR. If the value in the ARR is

zero, the counter is frozen.

The frequency of the repeating timer period through up or downcountiong is deter-

mined by:
fPeri()d = (A.2)
ARR+1
TIMx Capture/Compare Mode Register 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
oczm OoCIM
w rw
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
oc2 oc2 oc2 ocCl1 ocl1 ocl1
CE oczMm PE FE cc2s CE oCIM PE FE CCIS
rw rw w w w w w w w w w w w w w

Figure A.3: Capture/Compare Mode Register 1 .cf [24, p. 2118]

In the register description, X is the channel number 1 or 2.

OCxCE (Output Compare x Clear Enable) [24]
0: no effects
1: clears CxREEF if a High level is detected on ETRF (output of the resynchro-
nization circuit)
OCxM (Output Compare x Mode): [24]
110: set output to PWM mode 1 (upcounting)
See [24, p. 2120] for a deeper description of the PWM modes
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OCXPE (Output Compare x Preload Enable): [24]
0: disables Preload register
1: enables Preload register

OCXFE (Output Compare x Fast Enable): [24]

This bit accelerates the processing of events to the Capture/Compare output or

the trigger input.

0: Acceleration off, the minimum triggerd input delay is 5 clock cycles

1: Acceleration on, the triggerd input delay is reduced to 3 clock cycles

CCxS (Capture/Compare x Selection): [24]
Bit-field configures timer channel as input or output
00: configures Capture/Compare channel x as output
01: configures Capture/Compare channel x as external input 1
10: configures Capture/Compare channel x as external input 2

11: configures Capture/Compare channel x as internal input

TIMx Capture/Compare Register 1
7 5

15 14 13 12 11 10 9 8 6 4 3 2 1

CCRI

o o w o w o w w o o w o w o w

w

Figure A.4: Capture/Compare Register 1 .cf [24, p. 2128]

CCR1 (Capture/Compare Register 1): [24]

The Capture/Compare register contains the value that is to be compared with the

counter.
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31

30 29

TIMx Capture/Compare Enable Register

28

27

26

25

24

23

22

21

20

19

CcCc6pP

CC6E

CCSE

w

mw

w

11

10

7

6

5

4

3

2

CC4pP

CC3NP

CC3NE

ce3p

CC3E

CC2NP

CC2NE

cczp

CC2E

CCINP

CCINE

CCIE

w

w

w

w

rw

L

w

w

rw

w

rw

Figure A.5: Capture/Compare Enable Register .cf [24, p. 2124]

In the register description, X is a channel number between 1 and 6.

CCxP (Capture/Compare x output Polarity): [24]

If Capture/Compare x channel is set as output configuration:

0: Configures the output to active high

1: Configures the output to active low

If Capture/Compare x channel is set as input configuration:

CCxE (Capture/Compare x output Enable): [24]

See [24, p. 2125] for a deeper description

If Capture/Compare x channel is set as output configuration:

0: Switches the output off

1: Switches the output on

If Capture/Compare x channel is set as input configuration:

0: Disables capture

1: Enables capture

CCxNP (Capture/Compare x complementary output Polarity): [24]

If Capture/Compare x channel is set as output configuration:

0: Configures the complementary output polarity to active high

1: Configures the complementary output polarity to active low

If Capture/Compare x channel is set as input configuration:

See [24, p. 2125] for a deeper description

CCxNE (Capture/Compare x complementary output Enable): [24]

0: Disables complementary output

1: Enables complementary output
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TIMx Control Register 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UIFRE

MAP CKD ARPE CMS DIR OPM URS UDIS CEN

w w w w w w mw o w w w

Figure A.6: TIMx Control Register 1 .cf [24, p. 2106]

UIFREMAP (UIF status bit Remapping): [24]
0: Update interrupt flag is not copied into the Timer Counter register bit UIF
(Update interrupt flag copy)
1: Update interrupt flag is copied into the Timer Counter register bit UIF
CKD (Clock division): [24] By the bit field CKD a divison ratio can be determined,
which is used between dead time and sampling clock by the dead time generators
and the digital filters. To get more information about the divison ratio see [24,
p. 2106].
ARPE (Auto-reload preload enable): [24]
0: ARR register is configured as not buffered
1: ARR register is configured as buffered
CMS (Center-aligned mode selection): [24]
For the selection of center-aligned modes, see [24, p. 2106].
DIR (Direction): [24]
DIR bit only used in Center-aligned configuration.
0: Upcounting usage of counter
1: Downcounting usage of counter
OPM (One pulse mode): [24]
0: Continuous counting at update event
1: Stop counting at update event
URS (Update request source): [24]
The USR bit selects the update event source. Events:

0: Counter overflow/underflow, setting the update generation bit and generation
of updates by the slave mode controller.

1: Counter overflow/underflow and DMA request.
UDIS (Update disable): [24]
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The UDIS bit is cleaned by the software to enable update events. Update events
can be generated by counter overflow/underflow, setting the UG bit and update

generation by the slave mode controller.
0: Update event enabled
1: Update event disabled
CEN (Counter enable): [24]
0: Disables counter

1: Enables counter

TIMx DMA/Interrupt Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TDE |COMDE| CC4DE | CC3DE | CC2DE | CCIDE | UDE BIE TIE | COMIE| CC4IE | CC3ID | CC2IE | CCIIE UIE

w w o w w o w w w w o w w o w

Figure A.7: TIMx DMA/Interrupt Enable Register .cf [24, p. 2112]

In the register description, X is a channel number between 1 and 4.
TDE (Trigger DMA request Enable) [24]
0: Disables trigger DMA request
1: Enables trigger DMA request
COMDE (COM DMA request Enable) [24]
0: Disables COM DMA request
1: Enables COM DMA request
CCxDE (Capture/Compare x DMA request Enable) [24]
0: Disables Capture/Compare x DMA request
1: Enables Capture/Compare x DMA request
UDE (Update DMA request Enable) [24]
0: Disables update DMA request
1: Enables update DMA request
BIE (Break Interrupt Enable) [24]
0: Disables break interrupt
1: Enables break interrupt
TIE (Trigger Interrupt Enable) [24]
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0: Disables trigger interrupt
1: Enables trigger interrupt
COMIE (COM Interrupt Enable) [24]
0: Disables COM interrupt
1: Enables COM interrupt
CCxIE (Capture/Compare x Interrupt Enable) [24]
0: Disables Capture/Compare x interrupt
1: Enables Capture/Compare x interrupt
UIE (Update interrupt enable) [24]
0: Disables Update interrupt
1: Enables Update interrupt

TIMx Status Register
25

31 30 29 28 27 26 24 23 22 21 20 19 18 17 16

CC6IF | CC5IF

re_w0 | rc_w0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SBIF | CC40F | CC30F | CC20F | CCIOF | B2IF BIF TIF | COMIF | CC4IF | CC3IF | CC2IF | CCIIF | UIF

re_w0 | re_w0 | reew0 | reew0 | re_w0 | re_w0 | re_w0 | re_w0 | re_w0 | rew0 | re_w0 | re_w0 | re_w0 | rc_w0

Figure A.8: Capture/Compare Mode Register 1 .cf [24, p. 2114]

CCxIF (Compare x interrupt flag) [24]

If Capture/Compare x channel is set as output configuration:
0: Counter TIMx_CNT and register TIMx_CCR1 do not have the same value.
1: The counter TIMx_CNT has the same value as the register TIMx_CCRI.
If Capture/Compare x channel is set as input configuration:
0: Input capture not occurred
1: The counter value at the moment of the capture input has been written to
register TIMx_CCRI1

SBIF (System Break interrupt flag) [24]
It is required to reset the bit before the PWM can be restarted.
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0: No system break interrupt pending
1: Break interrupt occurrences if the system break line detected a high level. If
the BIE bit of register TIMx_DIER is set, an interrupt is generated.
CCxOF (Capture/Compare x overcapture flag) [24]
0: Overcapture not detected.
1: While the CCxIF bit was set, a counter value has been stored in the
TIMx_CCRI1 register.
B2IF (Break 2 interrupt flag) [24]
0: No break interrupt pending
1: Break interrupt occurrences if teh break line 2 detected a high level. If the
BIE bit of register TIMx_DIER is set, an interrupt is generated.
BIF (Break interrupt flag) [24]
0: No break interrupt pending
1: Break interrupt occurrences if the break line 1 detected a high level. If the
BIE bit of register TIMx_DIER is set, an interrupt is generated.
TIF ( Trigger interrupt flag) [24]
0: No trigger interrupt pending
1: Trigger interrupt has occurred
COMIF (COM interrupt flag) [24]
0: No COM interrupt pending
1: COM interrupt has occurred
UIF (Update interrupt flag) [24]
0: No update interrupt pending

1: Update interrupt has occurred
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DMA stream x configuration register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
MBURST PBURST CcT DBM PL
w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINCOS MSIZE PSIZE MINC | PINC | CIRC DIR PFCTRL| TCIE | HTIE TEIE | DMEIE EN
w ™ w w o w o [ w ™ w w [ w o [

Figure A.9: DMA stream x configuration register .cf [24, p. 1211]

PL (Priority Level) [24]
The higher the bit value of the bit field, the higher is the priority

MSIZE (Memory data SIZE) [24]
00: 8 bit
01: 16 bit
10: 32 bit

11: reserve

PSIZE (Peripheral data SIZE) [24]
00: 8 bit
01: 16 bit
10: 32 bit

11: reserve

MINC (Memory INCrement mode) [24]

0: fixed memory pointer adress

1: memory pointer adress is incremented after each data transfer
PINC (Peripheral INCrement mode) [24]

0: fixed memory pointer adress

1: memory pointer adress is incremented after each data transfer

CIRC (CIRCular mode) [24]

0: none circular mode

1: circular mode
DIR (data transfer DIRection) [24]

00: peripheral-to-memory
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01: memory-to-peripheral
10: memory-to-memory
11: reserved
PFCTRL (Peripheral Flow ConTRoLler) [24]
0: DMA controlles the flow
1: Peripheral controlls the flow
TCIE: (Transfer Complete Interrupt Enable) [24]
0: Transfer complete interrupt disabled
1: Transfer complete interrupt enabled
TEIE: (Transfer Error Interrupt Enable) [24]
0: Transfer error interrupt disabled
1: Transfer error interrupt enabled
EN (stream ENable) [24]
0: stream disabled

1: stream enabled

DMA stream x memory 0 address register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

MOA

w

MOA

o w w o w w w w o o w o w w w

w

Figure A.10: DMA stream x memory 0 address register .cf [24, p. 1215]

MOA (Memory 0 Address) [24]

Base address of the memory area 0 from or to data is read or written.
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DMA stream x peripheral address register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
PAR

w w w w w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PAR

w ™ w w ™ w o [ w o o w [ w o w

Figure A.11: DMA stream x peripheral address register .cf [24, p. 1215]

PAR (Peripheral AddRess) [24]

Base address of the Peripheral data register from or to data is read or written.

DMA stream x number of data register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

NDT

w o w o o w ™ w w o w Aty o w w w

Figure A.12: DMA stream x number of data register .cf [24, p. 1214]

NDT (Number of Data items to Transfer) [24]

numbers can be between 0 up to 65535
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31

DMAMUX request line multiplexer channel x configuration register

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

SYNC_ID

NBREQ

SPOL

SE

w

w

w

w

w

mw

o

w

w

9

5

3

0

EGE

SOIE

DMAREQ_ID

w

rw

w

w

rw

w

rw

Figure A.13: DMAMUX request line multiplexer
.cf [24, p. 1236]

DMAREQ_ID (DMA REQuest IDentification) [24]
To select the input DMA request

DMA low interrupt status register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

channel x configuration register

TCIF3 | HTIF3 TEIF3 | DMEIF3 FEIF3 TCIF2 | HTIF2 DMEIF2

r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2

TCIF1 TEIF1 | DMEIF1 FEIF1 TCIFO | HTIFO DMEIFO

r r r r r r r r r

Figure A.14: DMA low interrupt status register .cf [24, p. 1210]

TCIF (Stream x Transfer Complete Interrupt Flag) [24]
0: none conplet transfer event detected
1: conplet transfer event detected

TEIF (Stream x Transfer Error Interrupt Flag) [24]
0: none error event detected

1: error event detected
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DMA low interrupt flag clear register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
CTCIF3 | CHTIF3 | CTEIF3 |CDMEIF3| CFEIF3 | CTCIF2 | CHTIF2 | CTEIF2 |CDMEIF2| CFEIF2

w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CTCIF1 | CHTIFI | CTEIF1 |CDMEIF1 CFEIF1 | CTCIFO | CHTIFO | CTEIFO (CDMEIF CFEIFO

w w w w w w w w w w

Figure A.15: DMA low interrupt flag clear register .cf [24, p. 1210]

CTCIF (Stream x Clear Transfer Complete Interrupt Flag) [24]

1: cleans the transfer complete interrupt flag

CTEIF (Stream x clear Transfer Error Interrupt Flag) [24]

1: cleans the error interrupt flag
SPI configuration register 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
MBR CRC CRC SIZE

Al w w s Al o w rw w
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
X RX

DMA DMA UDRDET UDRCFG FTHLV DSIZE

EN EN
ald A Al Al ald L Al ald A w Al Al w A Al

Figure A.16: SPI configuration register 1 .cf [24, p. 2752]

TXDMAEN (TX DMA stream ENable) [24]
0: disables Tx DMA
1: enables Tx DMA
RXDMAEN (RX DMA stream ENable) [24]
0: disables Rx DMA
1: enables Rx DMA
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SPI configuration register 2

31 30 20 28 27 2 25 2 23 2 21 20 19 18 17 16
C‘% « | ssom | ssoE | ssiop ssu | cpoL | crHA FLIifT ’ggg sP coMm
w s Al 1Al w Al Al w s Al Al . Al Al
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
10SWP MiDI MSSI
o o w o o w w w w

Figure A.17: SPI configuration register 2 .cf [24, p. 2755]

AFCNTR: (Alternate Function GPIOs CoNTRol) [24]
0: peripheral has no control to the GPIOs
1: peripheral has control to the GPIOs

SPI/I2S control register 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10
LOCK

rs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TCRC | RCRC | CRC33 . C MAS
INI INT 17 SSI | HDDIR | CSUSP START RX SPE
w w w w w w rs w w

Figure A.18: SPI/I2S control register 1 .cf [24, p. 2750]

CSTART (master transfer START) [24]

0: master transfer is in idle state

1: master transfer is temporary suspended or running
SPE (Serial Peripheral Enable) [24]

0: disables Serial Peripheral

1: enables Serial Peripheral
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GPIO port input data register
22 21

31 30 29 28 27 26 25 24 23 20 19 18 17 16

IDRI5 | IDRI4 | IDRI3 | IDRI2 | IDRI1 | IDRIO | IDR9Y IDRS IDR7 IDR6 IDRS5 IDR4 IDR3 IDR2 IDRI1 IDRO

Figure A.19: GPIO port input data register .cf [24, p. 1078]

IDR (Port x input data I/O pin) [24]

It contain the input value of the corresponding pin

A.2 STM32CubeMX Configurations note

The STM32CubeMX configuration for the IPCC is shown in figure A.20.

Q o} IPCC Mode and Configuration
System Core Boot time: Runtime contexts:
Boot ROM Boot loader Cortex-A7 secure | Cortex-A7 non secure

Activated

I IPCC I

Analog
Timers
Connectivity

Multimedia

Reset Configuration

Security
Computing
Middleware

FREERTOS IPCC RX1 occupied interrupt
IPCC TX1 free interrupt V]

Figure A.20: STM32CubeMX configuration of the [PCC
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The STM32CubeMX configuration for the OpenAMP Framework is shown in fig-
ure A.21.

Q L OPENAMP Mode and Configuration
System Core Boot time Runtime contexts:
Boot ROM Boot loader Cortex-A7 secure | Cortex-A7 non secure Cortex-M4

¥ Activated

Analog
Timers
Connectivity
Multimedia
Security
Reset Configuration
® Parameter Settings | ® User Constants
Middleware R Configure the below parameters
FREERTOS Q (i ]
+~ OPENAMP Version
race and Debug Communication Mode

Power and Thermal

Configuration
Utilities

Figure A.21: STM32CubeMX configuration of the OpenAMP Framework

A.3 Attached Data

1 Software requirements specification

2 MATLAB Simulink target, model, and block library Smart_RCP
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