
Investigation of Capsule Networks Regarding their Potential of
Explainability and Image Rankings

Felizia Quetscher a , Christof Kaufmann b and Jörg Frochte c

Bochum University of Applied Science, 42579 Heiligenhaus, Germany
{felizia.quetscher, christof.kaufmann, joerg.frochte}@hs-bochum.de

Keywords:
Explainability, Capsule Networks, Dynamic Routing, Classification, Image Recognition.

Abstract:
Explainable Artificial Intelligence (AI) is a long-ranged goal, which can be approached from dif-
ferent viewpoints. One way is to simplify the complex AI model into an explainable one, another
way uses post-processing to highlight the most important input features for the classification. In
this work, we focus on the explanation of image classification using capsule networks with dynamic
routing. We train a capsule network on the EMNIST letter dataset and examine the model re-
garding its explanatory potential. We show that the length of the class specific vectors (squash
vectors) of the capsule network can be interpreted as predicted probability and it correlates with
the agreement between the decoded image and the original image. We use the predicted prob-
abilities to rank images within one class. By decoding different squash vectors, we visualize the
interpretation of the image as the corresponding classes. Eventually, we create a set of modified
letters to examine which features contribute to the perception of letters. We conclude that this
decoding of squash vectors provides a quantifiable tool towards explainability in AI applications.
The explanations are trustworthy through the relation between the capsule network’s prediction
and the corresponding visualization.

1 INTRODUCTION

Through the rise of machine learning applications
the demand for their explainability is increasing.
In the report Guidelines for Trustworthy AI (Ala-
Pietilä et al., 2019) the explainability of an AI
system is classified as part of its transparency and
it consists of two elements:

the ability to explain […] the technical pro-
cesses of an AI system and the related hu-
man decisions

When we use the term explainability, we refer to
the technical part of this definition. This is fur-
ther specified as requirement of an AI system to
be understood […] by human beings (Ala-Pietilä
et al., 2019). We interpret this definition as the
reasons that led to a decision of an AI system.

We focus on the classification task on images.
a https://orcid.org/0000-0003-1677-5858
b https://orcid.org/0000-0002-0191-3341
c https://orcid.org/0000-0002-5908-5649

Currently, the application of convolutional neu-
ral networks (CNNs) on this task is the state
of the art, see e. g. He et al. (2016) and Zoph
et al. (2018). Despite the ability of CNNs for
image recognition, classification and segmenta-
tion tasks, their decisions are neither always
self-explanatory for humans nor always human-
understandable at all.

Multiple approaches provide methods that
aim to explain the results and the vision inside
CNNs by isolating or highlighting important ar-
eas of the input image. This is done either by
the creation of approximated models (Ribeiro
et al., 2016, 2018) or by the additional calcula-
tions based on a trained model (Simonyan et al.,
2014; Selvaraju et al., 2017). However, there is
no approach yet that leads to a general conclu-
sive solution to explain the vision of CNNs.

Because of the difficult comprehensibility of
standard CNNs, we use an extension to CNNs to
improve the explainability of classification tasks.
One model architecture, that seems especially

https://orcid.org/0000-0003-1677-5858
https://orcid.org/0000-0002-0191-3341
https://orcid.org/0000-0002-5908-5649

suitable for this task, is the capsule network
(CapsNet) architecture proposed by Sabour et al.
(2017). Their explanatory potential results from
vectors, denoted as capsules, that potentially
store human-understandable features. In a spe-
cific approach called Dynamic Routing the infor-
mation transfer between the capsules is amplified
or mitigated. During training, the vectors of the
last capsules are masked and then inserted into
a decoder to restore the perceived features of the
input image. After training, the decoder supports
explaining the perception of the CapsNet.

Subsequently, we use the term CapsNet for the
model that consists of the capsule network itself
and also the decoder. In Sabour et al. (2017), the
CapsNet is trained on the MNIST dataset (Lecun
et al., 1998). It was shown that by modifying the
elements inside the last capsules, features such as
stroke thickness, width or scale change in the digit
of the decoded image. Because these features are
comparatively human understandable we exam-
ine the potential of CapsNets to create explana-
tory results.

We train a CapsNet model on the EMNIST
letters (Cohen et al., 2017) dataset. The focus
is set on the ability of the CapsNet to create ex-
planatory image rankings. The term image rank-
ing refers to the order of images based on their
predicted class probability. The higher the posi-
tion of the image in the ranking, the more it is
associated with the considered class.

Firstly, we show that the vectors produced by
the CapsNet are applicable for the creation of im-
age rankings. Secondly, we create and explain the
image rankings. The explanation is performed by
the visualization of those areas that contributed
to the prediction of the correct class. We extend
the explanation by visualizing those features that
contributed to the prediction of other classes. Fi-
nally, we explore the specific characteristics of let-
ters that are displayed in an image.

Overall, the main contributions of our work
is the examination of a CapsNet’s potential and
usability to

• create comprehensible image rankings for im-
ages of the same label and

• improve investigation techniques regarding
the explainability.

2 EXPLANATORY
APPROACHES OF CNNS

As mentioned above, there are in fact explanatory
approaches for CNNs. In this chapter, we provide
a brief overview about the properties of three fun-
damental explanatory approaches of CNNs: We
cover the LIME approach (Ribeiro et al., 2016),
occlusion maps (Zeiler and Fergus, 2014), saliency
maps (Simonyan et al., 2014) and the Grad-CAM
algorithm (Selvaraju et al., 2017).

The LIME (Local Interpretable Model-Agnos-
tic Explanations) approach is a general method
to explain single results of an AI model. It is not
limited to any specific model architecture. The
core idea of the LIME approach is the substi-
tution of a multidimensional non-human-under-
standable model with an easier interpretable but
linear model as approximation. It is extended
to non-linear approximations by anchors (Ribeiro
et al., 2018). Both approaches result in the ex-
amination and isolation of those image areas that
highly impact the class probability. However,
the results of both approaches show that the iso-
lated areas differ from those features that humans
would use for their perception.

Occlusion maps as first proposed in Zeiler and
Fergus (2014) are created by occluding different
parts of the input image and hence this approach
is model-agnostic as well. Rectangles filled with
gray or random noise are often used as occluder.
By shifting it through the image and recording
the predicted class probability, it can provide in-
sights which parts of the image are important
for a specific class. However, a drawback is that
the size of the occluder can influence the quality
of the map. Also when different objects of the
same or different classes are visible and a soft-
max output is used, occluding other objects can
decrease or increase the class probability, respec-
tively, which might lead to a wrong impression.

The approach to create saliency maps and the
Grad-CAM algorithm are model-specific and di-
rectly applied to an available trained CNN model.
Saliency maps visualize prominent pixels from a
specified layer of a CNN by either using guided
backpropagation (Springenberg et al., 2015) or
inserting the output of a layer into the inverted
model structure (Zeiler and Fergus, 2014). Both
methods provide a rough orientation for the im-
portant features of a class. However, due to the
evaluation of single outputs, the resulting features
are not related to each other and no explanation
for the decision-making of the CNN is included.

Primary
Capsule

[28, 28]
Input Image

[20, 20, 256]
Feature Maps 1

[6, 6, 256]
Feature Maps 2

[1152, 8]
Primary Caps

[26, 16]
High-Level Caps

[26]
Class Probs.

Conv. Layer
[256, 9× 9]

stride: 1
no padding

Conv. Layer
[256, 9× 9]

stride: 2
no padding

Reshape
dim: 8

Caps Layer
dim: 16

Vector
Length

[26, 16]
Masked Caps

[416]
Flat Array

[512][1024][784]
Flat Decoded Image

[28, 28]
Decoded Image

Flatten
Dense
Layer
ReLU

Dense
Layer
ReLU

Dense
Layer

Sigmoid
Reshape

Figure 1: Architecture of a CapsNet with an image input size of 28× 28 pixels and 26 output classes.

The Grad-CAM (Gradient-based Class Acti-
vation Map) algorithm (Selvaraju et al., 2017)
computes the gradient of the last feature maps
w. r. t. a specific class. The mean gradient of a
feature map is used as its weighting, because it
describes its importance for class. The positive
values of the weighted average of the feature maps
yields the class activation map. It highlights areas
in the original image that increased the predicted
class probability. Similar as saliency maps the re-
sults of the Grad-CAM algorithm are reasonable
for a rough orientation for the CNN’s decision.
However, they primarily show that CNNs rely on
different features for the classification than hu-
mans.

3 ARCHITECTURE OF THE
USED CAPSNET

The architecture of our CapsNet is illustrated in
Figure 1. It is based on the architecture pro-
posed by Sabour et al. (2017). The CapsNet
model starts with two subsequent convolutional
layers. We use a Leaky-ReLU activation func-
tion with a leak of a = 0.01 for both convolu-
tional layers. Gagana et al. (2018) showed that
Leaky-ReLU improves the performance compared
to plain ReLU. From the output array of the sec-
ond convolutional layer (named Feature Maps 2
in Figure 1) the primary (also: low-level) capsules
are formed by reshaping them. Each primary cap-
sule consists of a group of np feature maps (here:
np = 8) at a specific location. The number of val-
ues inside a capsule np must be a divisor of the
number of feature maps nm (here: nm = 256),
such that nm

np
is the number of primary capsules

per location (here: 32). Together with the di-

mensions [hm, wm, nm] of the feature maps (here:
[6, 6, 256]) it results in the number Np of primary
capsules (here: Np = 1152).

Np = hm · wm · nm

np
(1)

Similar to common neurons, capsules also have
an activation function. As in Sabour et al. (2017),
we use the squashing function

ĝ =
||g||22

(1 + ||g||22)
g

||g||2
(2)

where g is the vector of a capsule. It squashes
the length of the output vector ĝ of a capsule
between 0 and 1. The resulting length depends
non-linearly on g. The squashing function is per-
formed to both primary and the subsequent high-
level capsules.

The values in a capsule can be interpreted as
neurons, since each primary capsule i is fully con-
nected to each high-level capsule j by a weight
matrix Wij . However, there is no bias vector.
The Dynamic Routing algorithm (Sabour et al.,
2017) is executed between the primary capsules
and the high-level capsules. It adds an additional
coupling coefficient cij between each primary cap-
sule i and each high-level capsule j, which stems
from a routing logit bij by applying a softmax
across j. The routing logits bij are initialized with
zeros for each forward pass and updated within
the routing iterations. Their values result from
the relevance of the prediction of a primary cap-
sule i to the prediction of a high-level capsule j,
see Procedure 1 in Sabour et al. (2017). As a
result, the connection between both capsules is
amplified or mitigated.

The number of high-level capsules is equal to
the number of classes. We use the EMNIST letter
dataset (Cohen et al., 2017), which has 26 classes.

The number of values per high-level capsule is ar-
bitrary (here: 16). We refer to the output of a
high-level capsule as high-level squash vector and
for the array of all 26 high-level squash vectors as
high-level squash array. On one hand the length
of the high-level squash vectors is directly used
as predicted class probability. On the other hand
the high-level squash array is passed to the de-
coder for the reconstruction of the image.

For the decoder we also use the architecture
proposed in Sabour et al. (2017), see the bottom
part of Figure 1. Before the high-level squash ar-
ray is inserted into the dense layers of the decoder,
it is masked and flattened. During the training,
the masking is executed for the true class of the
input image. As a result, the values of the high-
level squash vector for the true class stay while
the values of all other high-level squash vectors
are set to zero. When we evaluate the model after
training, the masking is done for one or multiple
arbitrary classes, depending on the purpose of the
evaluation.

Like in Sabour et al. (2017), we use the margin
loss for the predicted class probabilities LC and
the the mean squared error (MSE) loss for the
decoder LD. Both loss terms are combined with
the weight d:

LLC = LC + d · LD (3)

This also means, that the decoder is not only re-
sponsible to reconstruct the images, rather it pro-
vides a regularization for the CapsNet to learn the
class representations inside the capsules.

2 4 6 8 10
Epoch

0.920

0.925

0.930

0.935

0.940

0.945

Ac
cu

ra
cy

0.045

0.050

0.055

0.060

0.065

0.070

M
ar

gi
n

Lo
ss

 o
f V

ec
to

r L
en

gt
h

Figure 2: Accuracy and margin loss of the predicted
class probabilities on the test dataset. Solid lines are
mean values and areas are std. dev. of ten runs.

4 TRAINING OF THE
CAPSNET

The model is trained on the EMNIST letter
dataset (Cohen et al., 2017) that contains 26
classes of handwritten white letters on a black
background. Each class contains 4800 samples in
the training set and 800 in the test set. To train
the network we used the parameters summarized
in Table 1.

During the training, the accuracy and the
margin loss LC is recorded for each epoch with
a test dataset, see Figure 2. The loss of class
probabilities LC converges faster than the loss of
the decoder LD. To avoid overfitting the decoder
was trained separately for additional 20 epochs
by providing the masked squash arrays as input
data.

5 PERFORMING IMAGE
RANKINGS WITH A
CAPSNET

To provide an impression about the appearance
of the high-level squash array, an example for
class A is displayed in Figure 3. The rows of
the squash array contain the individual squash
vectors for class A to class Z of the EMNIST let-
ters dataset. The first row for class A contains
the values with the largest deviation from 0 in
both positive and negative direction. The length
of this high-level squash vector, calculated by the
euclidean norm, is indeed 0.95. This value is sig-
nificantly larger than the lengths of the remain-
ing high-level squash vectors for the other classes.
Consequently, class A is predicted based on this
high-level squash array.
Table 1: Summary of applied parameters to train the
CapsNet.

Training Parameter Value
Epochs CapsNet (incl. Decoder) 10
Additional Epochs Decoder 20
Batch Size 100
Routing Iterations r 3
High-Level Capsule Dimension 16
Learning Rate 10−3

Decay Rate per Epoch 0.9
Decoder Loss Weighting d 0.392

unmasked
classes

unmasked
class

masked out
classes

high-level squash vector values

A
D
G
J
M
P
T
V
Y

Figure 3: Visualization of a [26× 16]-dimensional high-level squash array for the recognition of a sample image
of class A. Left: unmasked squash array, right: squash array masked for class A. A color map from blue to white
to red is applied, in which blue represents negative values, white zero and red positive values.

5.1 VALIDATION OF THE
SQUASH VECTOR LENGTH
FOR ITS USAGE IN IMAGE
RANKINGS

Before ranking images by the length of the high-
level squash vector, we confirm that the stored
features in a high-level squash vector are able to
represent the image. For that we visualize the
stored features by decoding the high-level squash
array masked for the true class. Then we measure
the quality of the restored image using the mean
structural similarity (SSIM) index (Wang et al.,
2004) between the restored image and the original
image. A scatter plot is created for all images
from the test set relating the SSIM index with the
length of the high-level squash vector for the true
class, see Figure 4. We also compute the Pearson-
Correlation coefficient between the lengths of the
high-level squash vector and the SSIM indices of
the restored images.

A positive correlation coefficient was found for
each class ranging from 0.53 for class I to 0.91 for
class V. The overview of all correlation values is
shown in Figure 5. This relation supports the as-
sumption that a larger high-level squash vector
stores more features which result in a clearer re-
construction of the letter. It seems reasonable to
evaluate the predicted class probability of an im-
age by the high-level squash vector length and to
use it for the creation of image rankings within
one class.

Figure 6 shows the calibration plot for all pre-
dicted classes. The calibration curve is monoton-
ically increasing. This strongly supports the ap-
plication of the high-level squash vector length for
an image ranking, despite that there is a deviation
from a perfectly calibrated curve. Because we do
not calibrate the models, we denote the high-level

Figure 4: Correlation of the high-level squash vec-
tors length for the complete test set with all classes
and the corresponding mean SSIM index between the
original image and the decoded image from a squash
array masked for the true class. The dotted lines show
the mean values.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Zall
0.0

0.2

0.4

0.6

0.8

Co
rre

la
tio

n
co

ef
fic

ie
nt

Figure 5: Correlation coefficients of high-level squash
vector lengths and SSIM indices for each letter and
once for all letters together.

0.0 0.2 0.4 0.6 0.8 1.0
Mean predicted value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

os
iti

ve
s

Figure 6: Probability calibration plot. The high-level
squash vector length is used as probability. The plot
uses the test dataset and aggregates all classes, where
each class is handled in a one vs. rest manner.

vector lengths as predicted probabilities.

5.2 CREATION AND
EXPLANATION OF IMAGE
RANKINGS

In this section we provide an example for an im-
age ranking based on high-level squash vectors
and their explanation. In Figure 7 we rank eleven
test images of class B with high-level squash vec-
tor lengths between 0.95 and 0.11.

One can observe that a small predicted proba-
bility yields a low intensity in the decoded image.

Also, the letters in these reconstructed images ap-
pear smoothed in comparison to the original im-
ages. Irregularities, such as line breaks and ad-
ditional serifs are reconstructed only to a small
degree. These missing details indicate that the
CapsNet tends to learn a generalized representa-
tion of the class. One reason for that might lay in
the rather large [9 × 9] convolutional filters that
are applied in two convolutional layers.

As discussed in Sabour et al. (2017), when
feeding the decoder with manipulated high-level
squash vectors, the characteristics in the decoded
image change in a certain way according to the
modified values. This provides a way to explain-
ability, but a tedious one, since the features are
different for each class and might be hard to in-
terpret. We use a different way. By masking the
high-level squash array for different classes, the
decoder reconstructs images of the corresponding
classes. This allows to view the image interpreted
as different classes. This is most interesting for
classes with large predicted probabilities to visu-
alize which part of the image contributed to the
prediction.

The third image row in Figure 7 shows the
decoded images based on the high-level squash
vector masked for the class with the highest pre-
dicted probability, while ignoring the predicted
probability for the true class B. The quality of
these reconstructed letters depends strongly on
the level of the predicted probability. Above a
predicted probability of 0.80, the decoded letter
is recognizable in all instances, while below 0.80

0.95

H

0.13

0.85

O

0.24

0.75

O

0.15

0.65

D

0.35

0.55

H

0.42

0.46

H

0.59

0.36

O

0.21

0.29

H

0.23

0.21

H

0.81

0.18

Z

0.72

0.11

G

0.74

Original

Masked
Prediction

‖vB‖

Class−

Masked
Prediction

‖v−‖

Dual Masked
Prediction

Figure 7: Image ranking samples from test dataset for class B based on the high-level squash vector length. The
decoded images, masked for class B, are shown together with the predicted probability of the original sample
‖vB‖ in the second row. The third row shows the decoded images, masked for the class with the largest high-level
squash vector that is not B. In the bottom row the decoded images, masked for both classes is shown.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Largest non-true predicted vector

A
B
C
D
E
F
G
H
I
J

K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Te
st

 d
at

a

18 23 46 21 17 101 76 40 12 21 13 14 43 41 43 120 25 10 8 29 12 19 7 17 24
18 44 59 17 10 92 161 34 10 25 31 7 18 17 31 86 29 17 12 5 24 31 6 5 11
17 11 12 135 14 113 19 66 7 44 55 9 10 44 35 63 24 15 14 14 9 21 2 10 37
38 52 42 14 14 60 87 35 33 18 22 9 32 85 36 43 25 5 16 16 25 20 12 12 49
21 24 103 30 30 87 23 35 8 68 12 7 13 22 115 55 39 6 11 17 16 18 0 7 33
22 15 15 10 45 65 29 82 24 52 19 3 13 4 106 93 38 24 80 4 9 12 9 14 13
56 40 70 22 14 28 27 41 30 5 9 3 16 8 14 275 11 44 4 4 10 13 5 23 28
39 109 12 21 9 6 55 67 8 72 34 38 76 16 23 39 19 6 28 25 25 45 9 12 7
7 8 3 10 5 7 7 3 53 2 622 4 8 1 2 9 4 0 9 2 2 4 2 4 22
16 22 55 61 17 12 36 9 145 9 96 4 10 18 16 33 2 36 37 13 31 18 9 10 85
17 24 27 12 29 17 58 99 53 13 25 12 14 12 42 46 91 9 28 24 18 35 62 18 15
2 3 33 10 3 3 5 19 599 5 22 0 2 5 9 9 5 0 17 10 18 5 4 5 7
37 5 114 8 5 12 61 48 33 16 23 9 98 6 39 23 21 6 8 13 53 86 11 18 47
49 11 25 20 6 6 32 87 39 17 19 14 66 17 35 29 66 5 17 30 33 112 35 14 16
37 47 106 130 15 2 61 12 67 17 26 20 8 23 33 55 7 8 23 35 12 21 3 5 27
16 26 39 19 19 78 57 62 45 6 46 29 6 28 7 115 59 2 19 17 22 15 7 25 36
79 28 19 22 17 11 349 33 49 13 8 11 3 12 31 23 6 8 1 7 13 16 9 19 13
28 16 42 10 39 9 32 20 43 11 54 23 15 66 13 112 25 6 44 6 76 12 22 38 38
6 13 71 21 20 11 91 11 92 60 15 23 0 22 10 12 100 9 7 5 7 106 3 10 75
16 18 22 20 30 86 40 29 89 65 26 50 5 18 5 41 37 52 3 3 4 15 28 23 75
71 8 54 30 16 1 36 26 33 17 17 31 13 18 48 24 37 16 5 12 186 54 5 32 10
15 10 48 32 5 6 45 27 46 24 27 66 5 21 13 33 39 48 4 20 147 24 22 56 17
24 15 31 29 6 8 40 64 57 20 17 32 26 100 4 42 84 30 2 10 59 64 9 12 15
21 24 15 11 8 10 42 126 59 10 76 31 16 22 12 34 29 37 12 21 19 22 21 98 24
24 25 11 11 2 19 60 27 73 25 19 58 9 36 11 21 72 28 9 41 16 75 24 77 27
34 9 49 17 65 11 36 20 122 20 67 40 1 14 22 47 81 19 5 42 6 27 13 20 13

Figure 8: Counts of the highest predicted class probability that is not the true class using the full test dataset.

the letter is recognizable in some cases.
By the decoded images for the true class and

for the class with the remaining largest squash
vector we show how the letters are perceived by
the CapsNet. Their areas cannot be transferred
directly to the input image but rather they indi-
cate why a letter was rated with a high probabil-
ity. Good examples are the images in the sixth
and ninth columns in Figure 7. These might be
a small b with a missing part in the bottom or
a small h. The highest predicted probability is
at the class H, but the class B also gets a high
probability. The decoder together with the mask-
ing provides a method to see how the image can
be interpreted as small b or h. This might also
work for occluded image parts. The restoring of
the missing characteristics of a class also supports
the hypothesis that the CapsNet learns general-
ized shapes of the classes.

When both high-level squash vectors of one
image have a large difference to each other, the
recognition by the CapsNet is clear. However,
the smaller the difference between the lengths of
both high-level squash vectors, the larger is the

ambiguity found in the original image. This is
often the case for the combination of two high-
level squash vector lengths between 0.30 and 0.80.

The last image row in Figure 7 shows the de-
coded image based on a high-level squash array
masked for both classes included above. Through
those images the interaction between the high-
level squash vectors is visualized. The closer
the lengths of both high-level squash vectors,
the stronger is their mutual impact on the dual
masked image. The impact is especially high in
the range if the difference between both lengths
is small.

As a result, the certainty for recognized fea-
tures correlates with the length of the high-level
squash vector. Through this relation a connec-
tion between the predicted class probability and
the explanations is created. Thereby, the explain-
ability results directly from the predictions of the
CapsNet which leads to trustworthy results.

To examine which letters are frequently ad-
ditionally detected in specific classes, the num-
ber of largest high-level squash vectors is accu-
mulated for the non-true class, see Figure 8. We

0.96

0.12

0.94

0.09

0.94

0.07

0.92

0.07

0.71

0.23

0.91

0.48

0.32

0.91

0.14

0.93

0.04

0.95

0.03

0.96

0.05

0.98

Handwritten
Input

High-Level
Squash

Array

R-Masked
Prediction

‖vR‖

K -Masked
Prediction

‖vK‖

KR-Masked
Prediction

Figure 9: Predictions of the decoder for the image set containing morphed images between the classes K and R.

see that the feature of class L is often found in
images of class I (622 times) and vice versa (599
times). This explains why the correlation coeffi-
cient between the high-level squash vector length
and the SSIM index was low for both classes. A
similar but less distinct phenomenon could ap-
pear at the next high combinations, such as G
and Q (275 and 349 times) as well as U and V
(186 and 147 times). The matrix provides an in-
sight to the perception of the CapsNet because
it shows which classes are found most frequently
within other classes.

5.3 EXPLORATION OF
PERCEIVED FEATURES

To explore the characteristics perceived by the
CapsNet in more detail we create a set of modified
images that contains the letter pair (R,K) from
the test data. The letter R is gradually trans-
formed to the letter K by hand, see Figure 9.
The images are inserted into the CapsNet and
the resulting high-level squash arrays are masked
for both classes separately. The corresponding
decoder outputs and the high-level squash vec-
tor lengths for classes R and K are shown. The
lengths are mostly decreasing for class R while
increasing for class K. As Figure 5 proved, often
a larger high-level squash vector leads to a clearer
reconstruction of the letter. This is confirmed by
Figure 9.

The length of the high-level squash vector

changes non-linearly between the samples in Fig-
ure 9. There are one or two images in which the
squash vector length together with the decoded
image quality rises or falls abruptly. According to
Figure 6, this behavior might be a sign for over-
confidence. The threshold in the squash vector
length could work as a support to investigate the
features that are crucial for the CapsNet to de-
tect a class. Apparently in this specific case, the
top line of the original letter is a decisive factor of
the CapsNet for or against class K. Equally, the
connection of the loop for the letter R must have
a certain intensity for the CapsNet to find the
class R. Several of the missing features are inter-
polated, we suspect, towards generalized letters
which maximizes activation. This assumption is
supported by the rise of the squash vector length
from the fifth to the sixth image. We assume, this
occurs because the sixth image resembles one of
the generalized letters for class R more than the
fifth image.

The explored threshold contributes to the ex-
planatory approach with the CapsNet. On this
basis, the characteristics that are important to
the recognition of a class can be extracted. The
threshold of two classes is not necessarily on the
same point. This results in the capability to rec-
ognize ambiguous images. Through the decod-
ing of the squash array masked for one class it
is explainable which characteristics of the input
image were perceived by the CapsNet. Further-
more, the ambiguous letters are also letters that
are ambiguous for the human perception.

6 CONCLUSION AND
FUTURE PROSPECTS

In the introduction we referred to the term ex-
plainability as an AI system that is understood
[…] by human beings (Ala-Pietilä et al., 2019).
With the high-level squash array of the CapsNet
together with the decoder we examined a strong
explanatory tool. We showed that the length of
the high-level squash vector is applicable as pre-
dicted class probability and that a ranking based
on its length is reasonable.

The image rankings were explained by decod-
ing specific high-level squash vectors. The result-
ing characteristics showed how the images can
be interpreted as the true class and as another
class. Thereby, we could explain which areas
were misrecognized by the CapsNet. Based on
the high-level squash vector length we could ex-
plain the degree of the misinterpretation. Finally
we showed, based on the transformation of spe-
cific images that the features used by the CapsNet
are comparable to the human recognition.

In conclusion, the length of squash vector pro-
vides an explainable and quantifiable tool for im-
age classification. Its advantage above post-hoc
explanatory approaches is the connection of the
class probability and the explanation by visualiz-
ing the features of the high-level squash array.
Both outputs rely on the values stored in the
high-level squash array resulting in a high trust-
worthiness of the explanations.

ACKNOWLEDGEMENTS

The authors of this work were funded by SUMA
e. V. as well as the federal state of North Rhine-
Westphalia and the European Regional Develop-
ment Fund FKZ: ERFE-040021.

References

Ala-Pietilä, P., Bauer, W., Bergmann, U., and Biet-
liková, M. (2019). Ethics guidelines for trustworthy
AI. EU Publications.

Cohen, G., Afshar, S., Tapson, J., and van Schaik, A.
(2017). EMNIST: Extending MNIST to handwrit-
ten letters. In 2017 International Joint Conference
on Neural Networks (IJCNN), pages 2921–2926.

Gagana, B., Athri, H. U., and Natarajan, S. (2018).
Activation function optimizations for capsule net-

works. In 2018 International Conference on Ad-
vances in Computing, Communications and Infor-
matics (ICACCI), pages 1172–1178. IEEE.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner,
P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016).
“Why should I trust you?” Explaining the predic-
tions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowl-
edge discovery and data mining, pages 1135–1144.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2018).
Anchors: High-Precision Model-Agnostic Explana-
tions. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 32(1).

Sabour, S., Frosst, N., and Hinton, G. E. (2017).
Dynamic routing between capsules. In Proceed-
ings of the 31st International Conference on Neu-
ral Information Processing Systems, NIPS’17, page
3859–3869, Red Hook, NY, USA. Curran Asso-
ciates Inc.

Selvaraju, R. R., Cogswell, M., Das, A., Vedan-
tam, R., Parikh, D., and Batra, D. (2017).
Grad-CAM: Visual Explanations from Deep Net-
works via Gradient-Based Localization. In 2017
IEEE International Conference on Computer Vi-
sion (ICCV), pages 618–626.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2014).
Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps.
In Bengio, Y. and LeCun, Y., editors, 2nd Inter-
national Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Workshop Track Proceedings.

Springenberg, J., Dosovitskiy, A., Brox, T., and Ried-
miller, M. (2015). Striving for simplicity: The all
convolutional net. In ICLR (workshop track).

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simon-
celli, E. P. (2004). Image quality assessment: from
error visibility to structural similarity. IEEE trans-
actions on image processing, 13(4):600–612.

Zeiler, M. D. and Fergus, R. (2014). Visualizing and
Understanding Convolutional Networks. In Fleet,
D., Pajdla, T., Schiele, B., and Tuytelaars, T.,
editors, Computer Vision – ECCV 2014, pages
818–833, Cham. Springer International Publishing.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V.
(2018). Learning transferable architectures for scal-
able image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 8697–8710.

