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The ongoing development of sensor and actuator technology opens up 

huge opportunities for manufacturers and users of underground mining 

machines. The acquisition and analysis of sensor data contributes to the 

process optimisation of mining operations and also helps improve ma-

chine production methods, which in turn offers a significant potential for 

cutting costs. This paper explains the possibilities and particular challenges 

arising in a number of areas, including data mining processes, manual rule-

based modelling, data architecture, data visualisation, statistical analysis 

and machine learning (ML). Case studies of drum shearer loaders and con-

tinuous miners produced by the Eickhoff Group are used to illustrate the 

knowledge gain and the opportunities now arising in this context.

Mining • Digitisation • Data science • Machines • Process 

optimisation • Cost saving

Data-driven Performance Metrics are 

 improving the Efficiency of Mining Machines
Prof. Dr.-Ing. Andreas Merchiers, Bochum University of Applied Sciences, Bochum, Germany

Prof. Dr. rer. nat. Henrik Blunck, Bochum University of Applied Sciences, Bochum, Germany

Arne Köller, M. Sc., Institute for Advanced Mining Technologies (AMT), RWTH Aachen University, Aachen, Germany

Dr.-Ing. Christian Gierga, Eickhoff Bergbautechnik GmbH, Bochum, Germany

1  Data Science in an industrial 
 Environment

Companies in almost every branch of industry have for 
quite a few years now been coming under growing pres-
sure to ‘do their homework’ in matters relating to digiti-
sation. The growth in automation and the increased use 
of on-board sensor and actuator technology, combined 
with ever more extensive system integration, means that 
manufacturers and users alike are now holding huge 
quantities of machine and process data. 

The machinery manufacturers have seized on this 
development as an opportunity to strengthen their 
competitive position by offering a range of additional 
digital services. The primary objectives here are to op-
timise process control on the user side and, at the same 
time, to leverage savings potential through condition-
based maintenance strategies by means of condition 
monitoring. Moreover, an analysis of the field data also 
holds enormous potential for the manufacturers’ own 
operations. This provides the R&D and design depart-
ments with a much better understanding of the actual 
operating conditions and usage behaviour of their prod-
ucts (Fig. 1) – yielding complete and objectively ana-
lysable data time series instead of merely snapshots of 
data paired with proprietary heuristic knowledge of 
the personell. On this basis the machine’s performance 
characteristics and functionalities can be adapted and 
optimised in a much more targeted way and stockhold-
ing and maintenance strategies can be designed along 
customer- and machine-specific lines. 

The industry has come to realise that the sustain-
able consolidation of its own competitive standing – 
both at the point of production and at the equipment 
manufacturers – now lies in the application of data 
analysis and that this technology transcends its own op-
erational boundaries  and has interfaces into peripheral 
systems. Yet the actual spectrum of requirements is still 
extremely diffuse: For some, the mere visualisation of 
sensor data with a focus on the reliability and validity 
of the data is sufficient, while others see data analytics 
as the key to achieving process stability and reproduc-
ibility, regardless of what is actually known about the 
cause-effect relationship in complex systems. Common 
to all intentions, however, is the goal of going beyond 
the heuristic approaches of the lean world and arriving 
at evidence-based proposals based on statistical models 
and evaluations.

Fig. 1: Continuous Miner machine manufactured by Eickhoff Bergbautechnik

Photo: Godehardt

Success will therefore essentially and always depend 
on the ability to control and manage the typical stages 
and aspects of the data pipeline – from sensor data ex-
traction, data buffering, storage and processing to visu-
alisation. 

2  Data Science in the Coal Mining 
 Industry

For the underground mining sector focused in this tech-
nical paper – using two example scenarios, namely long-
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on the other. In this context Section 3 (below) uses the 
example of a system for identifying the extraction cy-
cles of continuous miner machines, and the associated 
process of calculating the excavated volume, in order to 
show algorithmic data treatment in action, i. e. the Data 
Mining Process with modelling of a manual rule-based 
system. Section 4 then presents an infrastructure-based 
data architecture that provides for the efficient calcu-
lation of arbitrary algorithms based on arbitrary data. 
Following on from this Section 5 then provides further 
examples of application scenarios for data science algo-
rithms and methods. Finally, Section 6 contains a gen-
eral summing-up and looks ahead to ongoing develop-
ments in this field.

3  Handling of Sensor Data using the Ex-
ample of Extraction Cycles and Mining 
Volumes for Continuous Miners

This section starts by presenting the algorithmic treat-
ment of sensor data from a continuous miner machine 
for the purpose of identifying the extraction cycles and 
calculating the extracted volume of material, this serv-
ing as an example of how data science algorithms and 
methods can be implemented in the field. The cutting 
and/or extraction cycle, in idealised form, comprises the 
following individual stages that are abstracted for the 
purpose of cycle identification (Fig. 3): 

1 Approach run to the coal face
2 Sumping into the roof of the heading
3 Lowering the cutting boom/downward cut
4 Cutting into the floor and backing out with lowered 

cutting boom to clear the floor material

The individual stages that make up this extraction cy-
cle may vary according to the colliery and geological 
conditions [3, pp. 22f, 56f ]. However, the idealised 
sequence of the individual steps of the extraction cycle 

Fig. 2: Data science algorithms and methods for underground mining equipment manufactured by the  
Eickhoff Group

wall face extraction by shearer loader and room and pil-
lar working with continuous miners – the developments 
under way are similar to those taking place in other in-
dustrial sectors. The potential for expanding the perfor-
mance spectrum and existing range of business models 
is enormous. Most of the machines now being deployed 
below ground are fitted with sensors that are designed 
to provide the information base for machine guidance 
and control. The data collected by the sensors can also 
be stored for further analysis at some point in the future. 
The acquired sensor data are accessible via the increas-
ingly well developed IIoT infrastructure of the superor-
dinated mine information systems and in this way can 
be used for machine-to-machine communication [1], 
SCADA (‘supervisory control and data acquisition’) 
visualisation and mine-external storage and process-
ing [2]. Channelling the data from several machines 
of similar or different type into an information system 
for machine-overarching storage and processing also 
enables existing hypotheses and data-analytical models 
to be cross-checked against entire fleets of machines 
and quantitative assessments of mining subsystems and 
overall systems. This latter option can have a significant 
impact on the operational and strategic optimisation 
decisions taken by mine operators and machine manu-
facturers. 

Real-case examples that have been applied by the 
Eickhoff Group are presented below in order to illus-
trate the opportunities now provided by using data sci-
ence algorithms and methods on mining machines and 
to set out the infrastructure requirements needed for 
their implementation (Fig. 2).

The operational deployment of data science algo-
rithms and methods can be divided into the algorithmic 
treatment of data for the purpose of information and 
knowledge acquisition, on one hand, and the creation of 
infrastructure-related conditions for the systematic and 
continuous integration of these algorithms into a min-
ing machinery manufacturer’s products and processes, 
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cannot generally be identified in the actual positional 
data generated by the cutter boom, which is why the 
statistical threshold value and control systems have to 
be supplemented by methodologies borrowed from the 
world of data science. As will be seen later, this includes, 
for example, explorative-visual data analysis techniques. 
When the extraction cycle is identified and defined this 
information can then be used to calculate performance 
metrics for the cycle duration and extracted volume.

The operational-algorithmic procedure for detect-
ing extraction cycles and calculating the volume of min-
eral extracted typically corresponds to the flow diagram 
depicted in Fig. 4, where the following stages apply:

 ▶ Selection
 ▶ Date pre-processing
 ▶ Transformation
 ▶ Data mining
 ▶ Interpretation/evaluation

In the following, the steps depicted in the flow diagram 
in Fig. 3 are worked through in the real-case example. 
The data source is a relational database into which the 
sensor data from the continuous miner is channelled via 
a realtime protocol as a communications interface. The 
selection of the data required for the particular appli-
cation can therefore be made using SQL retrieval lan-
guage. Sensor data relating to the motor currents and 
the cylinder position of the boom are especially useful 
for identifying the cycle and calculating the volume of 
mineral excavated. Moreover, in the data pre-process-
ing stage threshold values for the motor current can be 
established for motor start-up and switch-off in order to 
be able to identify such data outliers and deal with them 
appropriately. In this particular case there is no need to 
carry out a data transformation process. 

In the present context data mining can be defined 
as a specific operation aimed at acquiring information 
and knowledge from pre-processed data. The data min-
ing process uses data science algorithms and methods 
to generate knowledge from the data sets [5, p. 24]. 
The following specific process options are available to 
choose from: 

Fig. 4: Flow chart for the algorithmic processing of data for knowledge acquisition [4]

Fig. 3: Simplified continuous miner extraction cycle 

focused on cycle identification

 ▶ Classification: a process for predicting a categorical 
variable based on sensor data

 ▶ Regression: a process for predicting a numerical 
variable based on sensor data

 ▶ Clustering: a process for dividing the consolidated 
data into groups presenting similar characteristic 
feature

In the context of learning algorithms, also known as 
‘machine learning’, classification and regression pro-
cesses are referred to as ‘supervised’, whereas clustering 
processes are called ‘unsupervised’ [5, p. 49 ff ]. In the 
context of non-learning algorithms all three processes 
listed above can be understood to be manual rule-based 
methods. Models are formed via the sensor data both 
in the context of learning and non-learning algorithms. 
According to the above listing these models perform the 
role of predicting a variable (classification and regres-
sion) or of dividing the data into similar groups (clus-
tering). 
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fully correspond to the ideal, resp. simplified, version 
of an extraction cycle but rather produce a less consist-
ent overall picture. Individual geological circumstances, 
and even the cutting technique used by the machine op-
erator, can result in variations in both the maximum and 
the minimum height of the cutter boom and these posi-
tions can differ quite significantly over successive win-
ning cycles. It is also evident from the sensor data that 
the downwards cut can be made at different speeds and 
with pauses of different length in between. In addition 
to this, floor cleaning cuts may be carried out before the 
machine engages in a new roof cut.

While these deviations from the idealised extrac-
tion cycle do complicate the detection of the individual 
extraction stages to some degree, they also yield quite 
valuable information that can be used, for example, for 
training the machine operators. Here an extraction-cy-
cle detection routine can be used to quantify the oper-
ating profile of different machine operators – with the 
aid of known quantities of coal mined by the individual 
operators, resp. shifts. 

Having access to a graphic image of the cutter-boom 
height, as presented in Fig.  6, serves to illustrate the 
differences that exist between the shifts, resp. crews, de-
ployed on machine operating duties. The cuts taken by 
one crew of operators show very consistent maximum 
boom heights, while the data obtained for a second 
crew indicate a less regular performance. Having said 
that, the winning cycles completed by the ‘irregular’ 
group are on average shorter than those produced by 
the more consistent group, so that the mere awareness of 
these differences does not provide a clear evaluation of 
the situation and ultimately only confirms the correla-
tion between machine operators and cutting behaviour, 

Fig. 5: Continuous miner extraction cycles on two temporal zoom levels

The blue graph line represents the height position of the cutting boom depending on the time. The orange and turquoise lines represent 
the cutter motor currents and the yellow line the hydraulic motor current. The bar chart (below) represents the cutting phases (green), 
cutting preparation phases (light green) and other (orange), as floor cleaning phases.

Fig. 6: Comparative visual data analysis of different groups of continuous 

miner operators – plot lines for the boom heights associated with 

uniform and non-uniform cutting

In the example case in point a manually generated, 
rule-based classification model is selected for detecting 
the individual steps in the extraction cycle. The reason 
for this choice is that the individual stages that make up 
the extraction cycle can be described with sufficient pre-
cision using a fairly small set of rules that have been very 
selectively defined using process know-how. An explora-
tive data visualisation, whose results are explained be-
low, is carried out beforehand in order to determine the 
set of rules required. Fig. 5 shows a sequence of several 
extraction cycles over a longer period of time. The blue 
graph represents the height position of the hydraulic 
cylinder that operates the boom. Clearly recognisable 
are the individual extraction cycles and, in particular, 
those points in time when the continuous miner low-
ers its boom for the downwards cut. At these points in 
time the cutter motor currents (shown in orange) also 
present higher amplitudes and variances. Fig.  5 also 
shows, however, that the actual extraction cycles do not 



 MINING 33

GeoResources Journal 1 | 2021Merchiers, Blunck, Köller and Gierga:

Data-driven Performance Metrics are improving the Efficiency of Mining Machines www.georesources.net

S
p

e
ci

al
 T

o
p

ic

as these differences can be verified to be consistent over 
time as long as external conditions do not change. 

The foremost objective of an extraction-cycle detec-
tion system, however, is to count the extraction cycles 
and in this way to conduct a performance evaluation of 
the continuous miner and quantify the volume of coal 
extracted, taking account of the known geometry of 
the cutter drums and the depth of cut. These aims can 
be achieved, in spite of any irregular cutting behaviour, 
provided that the commencement and end of the ex-
traction cycle are correctly recognised and floor clean-
ing stages are not erroneously identified as new cutting 
cycles, as represented graphically in the stylised depic-
tion in Fig. 7. Here the blue plot line depicts the posi-
tion of the boom while the red line represents the cutter 
motor current. Two individual extraction cycles can be 
identified in this case. The movements taking place at 
the end of the second cycle are not incorrectly identi-
fied as the start of a new winning cycle. A rule-based 
classification model can be derived from the findings of 
this explorative data visualisation process and this will 
provide an accurate definition of the extraction cycles of 
the continuous miner machine. There are several differ-
ent ways in which this can be used to obtain an approxi-
mated calculation of the volume of material extracted. 
For example, the number of extraction cycles identified 
over the course of a working shift can be multiplied by 
an empirically determined, average volume of material 
per cycle. Alternatively, or in addition, the volume of 
mineral extracted during each extraction cycle can be 
calculated using the cutting height, the depth of cut 
taken by the drum and the drum width. The current re-
corded at the cutter motor can  also be used in order to 
remove any empty runs or non-productive cuts from the 
calculation. 

As noted above, obtaining a precise, reliable and 
sound calculation of the key performance indicators, 
and particularly the number of cutting cycles and the 
tonnage, will ultimately depend on the approach taken 

Fig. 7: Identification of winning cycles despite  irregularities

in handling the many irregularities, the different opera-
tor styles and the local conditions. Here help can be pro-
vided in the form of data science algorithms and meth-
ods, which are first trained with real machine operating 
data in which ideally many of the aforementioned vari-
ations can already be observed. Using additional real 
data the recognition of extraction cycles and mineral 
volumes can be tested for general accuracy and undesir-
able local artefacts.

A high degree of accuracy in the identification of 
the performance indicators is particularly possible when 
the variations lead to different findings for the recog-
nition of the performance parameters, such as the typi-
cal maximum and minimum boom heights, the typical 
cycle times and the typical horizontal machine travel 
paths during one cutting cycle. The collection and inter-
pretation of ‘big data’ obtained under real conditions, 
i. e. the transmitted sensor data, play a key role here. 

4  Data Architecture and IT Infrastructure 
Requirements below Ground

The operational deployment of data science algorithms 
and methods for the analytical treatment of data, as 
described in the example presented in the previous 
section, first requires the creation of infrastructural 
IT systems that are capable of storing and processing 
the sensor data and making it available for visualisa-
tion and/or further utilisation. For mining equipment 
manufacturers this presents the challenge of having to 
systematically integrate these algorithms and processes 
into an already existing and only part-integrated data 
infrastructure, or indeed of having to create a new one 
completely from scratch. For the purpose of this paper a 
data infrastructure is defined as the entire body of data 
handling systems that are used for the transmission, 
storage, processing and visualisation of data. Persistent 
data sinks, such as databases, are required for example 
to store the sensor data and these have to be populated 
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a big-data data infrastructure can be systematically de-
rived and specified in the following context:

 ▶ Large volumes of data and hence considerable stor-
age requirements

 ▶ High data generation, transmission and processing 
speeds

 ▶ Inhomogeneous data formats.

Big-data data infrastructures first try to process large 
volumes of data in an efficient manner. Here the speed 
at which the data can be read by an permanent memory 
plays a central role: a continuous miner fitted with five 
sensors, for example, generates a total of 1.73 million 
data points a day at a rate of 250 ms per data point and 
this has to be stored after it has been transferred into 
the data infrastructure. The terabyte-sized permanent 
memories in typical use today can now offer sufficiently 
large and convenient storage space for data volumes 
of this kind. However, the real problem for such large 
quantities of data has proved to be the read rate of the 
permanent memory. If this is about 600 MB/s, as is the 
case when rapid SSDs (solid state disks) are being used, 
it still takes about 28 minutes to read the entire contents 
of the permanent memory. This is not sufficient to meet 
the data infrastructure’s expressed target of being able 
to perform arbitrary calculations on arbitrary volumes 
of data in an efficient manner. A possible solution here 
is to use a distributed system for the parallel processing 
of the data sets [9, p. 3 ff ]. Here the entire body of data 
is distributed over several permanent memories that can 
be read from simultaneously. If a set of data amounting 
to 1 terabyte, in other words 1,000 billion bytes, is di-
vided separately on to 25 SSDs each with a read rate of 
600 MB/s, and if the amount of data on all the SSDs is 
read off simultaneously, it will only take about 1 minute 
and 6 seconds to read in the 1 terabyte of data. 

However, a distributed system does not only consist 
of computers and data stores each with 25 SSDs but also 
requires an entity that holds and records which sets of 
data are held on which permanent memory. By the same 
token the body of data is not necessarily distributed over 
the permanent memories in a completely unconnected 
way but can, for reasons of failure safety, also be held 
on a redundant basis. If an permanent memory should 
fail the data sets it contains can still be found on other 
permanent storage points. 

These connections and interdependencies between 
the individual system parts – the data storage comput-
ers on one hand and the computer nodes coordinating 
and logging the data distribution process on the other 
– represent the constitutive elements of a distributed 
data infrastructure. If more storage space is needed, or 
if the resilience to hardware and software crashes is to 
be enhanced, this can be achieved by using distributed 
data infrastructures: either by means of horizontal scal-
ing-out, i. e. adding new computers to the network, or 
vertical scaling-up, i. e. upgrading the existing network, 
this usually focussing on the computer hardware system. 

into a  coherent system landscape. Access to these data 
sinks should also be presented as unitary, fail-safe and 
responsive for downstream data processing and visu-
alisation systems [6, p. 7 ff.]. For mining equipment 
manufacturers in particular it is vital to have interme-
diate buffering of the data stream as it ‘flows’ through 
various subsystems in the data infrastructure. This has to 
be seen against the background of highly latency-prone 
communication pathways between the on-board data 
source and any distant data storage and processing de-
vices. Here the complexity of a data infrastructure sys-
tem is very much measured and defined by the demands 
being placed on it. Depending on the circumstances and 
the requirements they impose a semi-integrative data 
infrastructure can in fact achieve pragmatic objectives, 
which may provide grounds for the use of data science 
processes.

This initial description of the requirements that 
have to be met by a data infrastructure always reveals 
the software-architectonic complexity that equipment 
manufacturers have to face in the context of a system-
atic integration of data science algorithms and methods, 
especially against the backdrop of ‘big data’. The aim of 
this section is therefore to present an exemplary descrip-
tion of such a data infrastructure in consideration of the 
particular conditions that apply in the mining industry. 
With this in mind it is first necessary to explain the 
aforementioned term ‘big data’.

4.1 What is ‘Big Data’?

The term ‘big data’ refers to the huge rise in the vol-
ume of data in terms of the required storage resources, 
the generation, transmission and processing speeds in-
volved and the inhomogeneity of the data formats [7, 
8]. The increasing integration of sensors in machines 
means a continuous growth in the quantities of data 
to be processed [9, p. 1 ff ]. The challenges involved are 
intensified by the costly realtime processing operations 
that have to be carried out on these substantial data 
streams, e. g. when using prognostic machine controls 
in support of operational processes. This situation is 
aggravated by the fact that these data processing rou-
tines usually cannot be undertaken by the hardware 
that is embedded in the machine itself. What is more, 
different sensor datasets can exhibit structural dispari-
ties (‘inhomogeneity’) when it comes to their (format) 
semantics and logical data type. A machine-overarch-
ing data infrastructure must have the characteristics 
needed to meet all the different requirements imposed 
by large, high-frequency, inhomogeneous data collec-
tions. 

4.2  Characteristic Features of a big-data 
Data Infrastructure

The purpose of a data infrastructure is to perform ar-
bitrary calculations on arbitrary datasets and to do this 
efficiently [6, pp. 27, 83]. The characteristics required of 
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Big data also presents a data infrastructure with the 
challenge of having to achieve rapid handling speeds 
for data processing operations. One example of such a 
data processing operation is the use of the classification 
model (see Section 3 above) for handling distributed 
sensor data from one or several continuous miners. In 
practice, a MapReduce program or I/O-efficient data 
processing systems are mainly used for this purpose [9, 
p. 18f, p. 98; 10, p. 14f ]. In the first case, namely the 
MapReduce approach, partial results are first filtered 
into subsets of the overall body of data and then sub-
sequently merged together again to produce an overall 
outcome. The MapReduce option can also be described 
as parallel data processing. In the second case, namely 
the I/O-efficient approach adopted by Apache Spark, 
the distributed system attempts to carry out as many 
calculations as possible in a memory-uniform way us-
ing high-performance storage units such as processor 
registers, processor caches and random-access memory 
devices, with the aim of avoiding time-consuming per-
manent memory operations. Sufficiently rapid connec-
tion speeds can be achieved by employing the latest tele-
communications technology and by the additional use 
of edge computing techniques, if required.

And finally, big data also compels the data infra-
structure to support as many domain-relevant data 
formats and types as possible. The latter can broadly 
be divided into structured data formats (e. g. relational 
data sources), semi-structured data formats (e. g. XML 
or JSON) and unstructured data formats (e. g. video 
and audio files) [9, p. 5 f.]. In the given example of the 
continuous miner in particular it is useful to provide 
for storage over and above the time-series type of sensor 
data, for example by storing microphone, video and im-
age data or even RADAR and LiDAR datasets. 

The characteristic features of a big-data data infra-
structure can be summed up as follows [6, p. 7 ff ]:

 ▶ Robust against software and hardware corruption 
and fault tolerant of human error

 ▶ Low read latency of the data memory and ad hoc 
data requests

 ▶ Horizontal scalability of the data storage and pro-
cessing hardware

 ▶ Generalisability of the data formats and types and 
easy expandability of the data processing environ-
ment

 ▶ Low maintenance effort required for the data stor-
age systems through the use of inherently distrib-
uted system architectures

 ▶ Simplified troubleshooting and debugging through 
the separated storage of processed data and raw 
data.

The following sections will seek to explain how a big-
data data infrastructure – such as that used for the clas-
sification model described in Section 2 – can be fitted 
out in this way and can be prepared for practical deploy-
ment at product and company level.

4.3  Example of a big-data Data Infrastruc-
ture Concept with Lambda Architecture

A lambda architecture, which can be represented in 
software-topological terms as a layer model, can be used 
to integrate the various systems and tools needed for de-
veloping a data infrastructure into a complete system [6, 
p. 14]. Here a distinction is made between batch layer, 
serving layer and speed layer as the key system compo-
nents (Fig. 8).

4.3.1 The Batch Layer

The batch layer of a lambda architecture stores and 
processes the data in fixed cycles. In the given example 
of the continuous miner the sensor data, after going 
through a buffered and mine-external transmission pro-
cess, are first transferred to the batch layer of the lamb-
da architecture and held in storage there. As outlined 
above, the sensor data are stored in a distributed system 
using several computers with permanent memory, pos-
sibly with redundancy grouping. This creates robustness 
against the software and hardware corruption of a data 
infrastructure and also provides for horizontal system 
scalability. One example of such a distributed system 
used as a batch layer for a big-data data infrastructure 
is the Apache Hadoop framework whose functionalities 
and features are called on below for the application of 
the lambda architecture.

As the continuous miner then continuously gen-
erates sensor data and sends this information to the 

Fig. 8: Lambda architecture as layer model [6, p. 19]
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is therefore made possible by the generation of batch 
views in the batch layer and by the provision of batch 
views in the serving layer.

4.3.3 The Speed Layer

As the batch layer only carries out calculations on 
the master dataset cyclically, e. g. every three hours, it 
would not be possible, without an additional system 
component designed to supplement the batch and 
serving layers, to ensure that calculation results for ad 
hoc data queries will always be available for the most 
recent data. If the calculation cycle of the batch layer 
takes three hours, for example, then downstream sys-
tems such as data visualisation will in the worst-case 
scenario have to wait three hours for newly calculated 
data. For condition monitoring systems, or even real-
time recommendation systems, this time span is simply 
too long in any case. That is why batch and serving lay-
ers are supplemented by a speed layer that performs in-
cremental calculations on the data accruing during this 
intervening period. 

4.4  Technologies and Frameworks for 
Building a Data Infrastructure

The lambda architecture as described above is just one 
of the potential architecture models that can be used 
for a big-data data infrastructure. If the results of the 
sensor data-based calculations are not time critical, in 
that they are not to be visualised in real time, the speed 
layer can be omitted entirely. On the other hand, if the 
results of the calculations are exclusively time critical 
in nature, e. g. because realtime condition monitoring 
is to be applied, then the batch and serving layers can 
be left out. 

The lambda architecture therefore describes how 
these two architecture models are connected together. 
Apache Hadoop can specifically be used for the batch 
layer while, to complement this, Apache Spark can be 
employed for an I/O-efficient data processing routine. 
ElephantDB and Apache HBase are technology options 
for the serving layer, while Apache Storm and Apache 
Kafka, along with their relevant microservices as pro-
cessing elements, can potentially be used for the speed 
layer. 

The following now presents further examples of 
how different algorithms can be used for underground 
mining machinery, these operations being executed us-
ing the aforementioned lambda architecture of a big-
data data infrastructure.

5  Example Applications from the 
 Eickhoff Group

The data science set-up as described above, that is to say 
the entire body of data science algorithms and methods 
available here, can be built up to different configuration 
levels to meet the specific needs of the end users.

big-data data infrastructure increasing quantities of 
data will be compiled over time in the batch layer. If an 
arbitrary function, such as the extraction cycle detec-
tion process described in Section 3 or a machine learn-
ing model, is then executed on this body of data, the 
runtime of the calculation can be substantially reduced 
by deploying the MapReduce-based parallel processing 
program or an I/O-efficient processing routine oper-
ating in combination with suitable systems. However,  
this time reduction is often insufficient to produce a 
result in real time.  

In order to be able to supply results to ad hoc data 
queries immediately the subcalculation or precalcula-
tion of the function is available in ‘batch view’, this 
combining with the storage of the calculation results 
that takes place in the serving layer [6, p. 15]. A batch 
view will, for example, contain the requested results 
from the extraction cycle detection regime, in other 
words the particular point in time when the continu-
ous miner was at a certain stage in the winning cycle. 
Another batch view will contain the results for the 
number of extraction cycles per day or for the vol-
ume of mineral extracted by the continuous miner per 
minute. The actual sensor data held in the batch layer, 
which is also referred-to as the master dataset, remains 
unaffected when calculating a batch view. This repre-
sents a paradigm shift in relation to incremental archi-
tectures, as the batch views are recalculated cyclically, 
e. g. every three hours [6, p. 9 f, p. 88 ff ]. One key aspect 
here is that the calculation logic, which prescribes the 
function for the batch view generation, is completely 
removed from the master dataset. If for example the 
function for extraction cycle detection has a software 
bug then it is only the batch view that will be defec-
tive, not the master dataset. The batch view can then 
be overwritten with the corrected program code in the 
next batch cycle. Here the interpretation of the format 
of the sensor data ideally takes place during the runtime 
of the data processing operation. This means for exam-
ple that Codec-formatted sensor data, such as audio, 
graphic and video data, can be saved as binary files. By 
providing additional support for the storage of sensor 
data in pure text formats it is possible for a data infra-
structure based on Apache Hadoop to support many 
different data formats at the same time.

4.3.2 The Serving Layer

The purpose of the serving layer is to supply the end 
user, e. g. a data visualisation system or an API, with the 
batch views calculated by the batch layer [6, p. 179]. The 
data in the batch views must be provided very quickly, 
that is to say without any high latency. The serving layer 
therefore uses index data structures to help speed up the 
process of retrieving certain data within a data memory. 
However, data storage in the master dataset of the batch 
layer does not necessarily use indices, as these can slow 
down the insert operations to the data memory. Run-
ning an ad hoc data query in the lambda architecture 
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5.1  Configuration Stages for Data Science 
Infrastructure in the Mining Sector

The first stage often involves the visualisation of raw 
data using machine data dashboards. Depending on 
the application, commercially available solutions can be 
used as a visualisation front end for fixed or web-based 
activities. In the specific case of the Eickhoff Group, Mi-
crosoft PowerBI (Fig. 9) and Grafana (Figs. 5 and 6) 
are employed as web-based user environments for data 
visualisation. The purpose of raw-data visualisation is to 
determine key machine and process parameters and to 
present them in raw form and in chronological sequence 
so that discontinuities and deviations from norm can 
be quickly identified and analysed in detail. Of special 
relevance here is the dashboard, where fixed target val-
ues and averages from the past can be called upon as a 
benchmark – rather like the rev counter in a motor car. 
As far as underground mining machines such as shearer 
loaders and continuous miners are concerned this is es-
pecially useful for displaying motor current data, and 
hence for determining the load status and the produc-
tive usage of the machine, and for visualising error fre-
quency rates and other general (production) parameters 
such as travel distance, runtime, etc. In addition to the 
basic set-up parameters the solutions available also al-
low for customised adaptations and evaluations. 

As outlined in Section 4, a serving layer is a funda-
mental requisite for visualising raw data, this providing 
for direct, rather than just sequential access to the data in 
as responsive a manner as possible. Here it is particularly 
important to be mindful of the amount of data being 
depicted. If this volume exceeds many tens of thousands 
of individual data points, as is often the case when view-
ing sensor data acquired over long periods of time, the 
body of data involved will have an impact on the respon-
siveness available to the end user within the data visu-
alisation system especially when zooming or panning. 
Here again the batch layer is able to pre-aggregate and 
present the body of raw data in various batch views with 
different depths of detail. For example a batch view can 
provide sensor-data averages calculated as data points 
over the course of one day, while another batch view 
can produce data points with per-second resolution. 
The latter is used when zooming into a small time range, 
while the former is used when zooming out in order to 
get an overview of a whole year’s output without having 
to explicitly load and display millions of data points. In 
this way the raw data can be made available in different 
levels of detail and in a manner that is adapted to the de-
tail setting selected for the visualisation. If realtime data 
are also to be visualised it is advisable to use data-driven 
updating of the visualisation elements. The raw data are 
actively transferred to the visualisation program as soon 
as they have been processed by the speed layer, rather 
than being supplied as batch views from which they can 
be loaded by the visualisation system.

The next configuration stage involves the visualisa-
tion of calculated values using classical statistical and 

Fig. 9: Raw-data visualisation in a machine data dashboard for a  
shearer loader

manual rule-based models. The data infrastructure that 
processes the required calculated values and delivers 
them to the visualisation front end must, as outlined 
in Section 4, be capable of performing any calculation 
on the data. Raw-data time series from different sen-
sors can be correlated, also visually, this point in order 
to reveal patterns and correlations and to help test pre-
established assumptions. In this case the values calcu-
lated using the data infrastructure correspond to the 
findings of a correlation analysis. Root cause analyses, 
which seek to establish the relationship between certain 
conditions and the cause(s) of the error or defect, are 
also focused in this configuration stage. Likewise, the 
visualisations of analyses serve to select the right ma-
chine maintenance strategy on the basis of observed 
machine behaviour compared to reference benchmarks 
of the machine in the sense of a ‘machine fingerprint’. 
In this context Fig. 10 presents by way of example the 
working load at the cutter motors of coal shearer ma-
chines of identical type as recorded during operations 
at different collieries. While, as Fig. 10 shows, the data 
for machine tracks (i. e. mines) 1 and 2 clearly indi-
cate that the shearer in question is on a unidirectional 
cutting plan (because one of the two cutter motors is 
much more heavily loaded than the other), the data for 
mine  3 point to a bidirectional mode of operation. It 
is none the less clear to see that the loads acting on the 
left-hand motors (CML) of the shearers operating at 
mine 1 and 2, both generally as well as in terms of peak 
loading, are frequently greater than those for the cor-
responding right-hand motors (CMR) operating at the 
same mine. Furthermor, these figures also lie above the 
more constant load values for the two motors fitted to 
the shearers operating at mine 3. This is useful informa-
tion for the servicing department as far as the supply of 
spare parts is concerned and will also be of interest to 
the operator of colliery number 3 (Fig. 10) in the light 
of the unused machine potential.

In keeping with the visualisation of the raw sensor 
data, the batch, serving and speed layers of a data infra-
structure are also required for the visual display of calcu-
lated values. Batch and speed layers are responsible for 
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number of cuts per shift over the two-week period 
shown, team 2 (right) is generally raising the cutter 
boom higher and the standard variance of the cutting 
height as a measure of the irregularity of the cutting ac-
tion is much lower than for team 1 (Fig. 6). As far as 
the extraction volume is concerned team 2 were seen to 
have performed better by nearly 10 %, this also being 
reflected in the OEE diagram (middle) for this time-
frame. The total accumulated productive times (light 
and dark green), and especially the cutting time (dark 
green), recorded by team 2 are significantly higher than 
those registered by team 1. 

The identification, and more particularly the evi-
dential proof of such disparities can act as valuable 
starting points for mine operators in their efforts to ap-
ply successful operating strategies across the board and 
exploit the productivity potential to the full. However, 
these findings are also extremely relevant for the equip-
ment manufacturer: they enable him to optimise the 
machine’s functions by applying operating parameters 
and constraints based on actual usage conditions and to 
organise appropriate operator training for this and for 
the relevant automation routines.

The visualisation of calculated values based on 
classical statistical and manual rule-based models also 
provides the basis on which machine learning models 
(ML models) can be built and deployed for particular 
applications. One of the benefits of the ML approach 
is that the complex know-how built up by the machine 
operator can be mapped algorithmically and this can 
contribute towards developing intelligent automation, 
for example by using regression and  classification mod-
els. Another is that clustering models can be used, for 
instance, to identify complex cause-effect relationships 
with multiple variables without the need for continu-

Fig. 10: Machine fingerprinting of shearer loader operations

Each boxplot represents the distribution of the respective motor current in the left (CML) and right (CMR) cutter motor in a specific 
extraction field of a mine.

performing the calculations on the raw data. The results 
of these calculations, such as the findings of a correla-
tion analysis or a statistical hypothesis test, are always 
stored in batch views in the serving layer, so that adja-
cent systems (e. g. visualisation) can have responsive ac-
cess to the resulting output. 

A further configuration stage that can be applied 
to the data science set-up as described here involves the 
inclusion of exogenous, i. e. in this case machine-exter-
nal, data. This will be described using the example of a 
continuous miner operating on a two-shift basis. Here 
the exogenous data consists of information relating to 
the shift allocation of the mine operator.

Selecting a larger time frame makes it possible to 
identify various performance metrics that can then be 
used to evaluate and consequently interpret persisting 
operation characteristics as well as trends. In Fig. 11 it 
is clear to see that even though the two teams of con-
tinuous miner operators are each executing a similar 

Fig. 11: Analysis of the quantities of coal produced by different groups of 

continuous miner  operators
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ous and precise knowledge of these influencing factors 
for all possible scenarios. The two examples presented 
below relate to the first of these applications. 

5.2  ML Example – Control and 
 Optimisation of the Machine Winning 
and Travel Paths

ML models can be used for example to control and 
optimise the travel paths of a shearer loader within the 
longwall system and can make a contribution to bet-
ter process automation. In this example the research 
focuses on predicting the longitudinal gradient of the 
face system in order to support the automation of the 
ranging drum arm – and in particular to help the ma-
chine adapt to changes in face gradient. In real terms 
this can lead to the development of proposals on ma-
chine steering and to the implementation of machine 
control systems. 

Based on the first 40 cuts taken by the shearer loader 
the ML model is able to learn the gradient position of 
the face – this is illustrated in the heat maps shown in 
Fig. 12 that represent the positive and negative longi-
tudinal tilt of the machine over the length of the face. 
In visual terms the model learns that a ripple in the coal 
seam will be cut earlier or later in each following pass. In 
accordance with the learned pattern it will then be pos-
sible to predict the slope angles of the next three to five 
cuts with a high degree of precision.

As soon as sensor data are available for the longi-
tudinal tilt of the shearer loader learning ML models 
can be developed on the basis of this information. The 
recorded data for longitudinal tilt and other variables 
(shearer position on the face, motor currents, etc.) are 
modelled on the target variables in the course of the 
learning step, which in this case means the longitudinal 
tilt values for the next five cuts. The role of the neural 
network is to approximate the mapping instruction so 
that after the learning stage the neural network is in a 
position to calculate the target variable by itself. In this 
specific case various architectures of neural networks 
were tested and validated, including pure feedforward 
networks and others with time-series optimisation. The 
ultimate result is a pure feedforward network (Fig. 13) 
that can predict the longitudinal tilt values of up to five 
future cuts better than the reference metrics of constant 
tilt settings.

As is also the case with the calculation of classical 
statistical and manual rule-based models the ML model 
as described here can be computed in the batch and 
speed layers of a big-data data infrastructure as outlined 
in Section 4.

5.3  ML Example – Compensation for 
 Sensor Failure during Cutting Cycle 
Identification 

The second concrete application is aimed at the reli-
able identification of the cutting cycle, and hence at es-

Fig. 12: Actual and predicted longitudinal tilt of a shearer loader over the 

length of the face

Fig. 13: Deep-learning prediction with MLP-FF regressor grid of 8 layers and 

86,785 parameters

tablishing the amount of mineral extracted by the con-
tinuous miner, despite a failure of the sensor system. 
The volume of material extracted correlates strongly 
with the number of cutting cycles completed, except 
for variances in the height of the cut. As described 
earlier in Section 3, the determining factor for extrac-
tion cycle identification is the change in the height of 
the cutter boom. However, the failure of the relevant 
sensor, or rather the non-transmission of the recorded 
data, often has to be compensated for – not least be-
cause of the extremely inhospitable conditions that 
can occasionally prevail in room and pillar mining and 
the intense strain that this can place on the machinery. 
Such malfunctions can be neutralised by using an al-
ternative method for gauging the height of the boom: 
this can be done directly using the amount of travel at 
the cylinder or indirectly based on the failsafe meas-
urements of the hydraulic flow at the actuating valves 
(Fig. 14). 

While these physical correlations are obvious, they 
are however very difficult to map into formula form. 
There are too many influencing factors to take into ac-
count – from frictional resistance and superimposed dy-
namic loading through to temperature levels. Further-
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of sensor data can also be compensated for by having 
an alternative body of correlating data. New business 
models based on availability and output can therefore 
be developed in a much more robust manner than be-
fore. While there is a huge potential on offer here, this 
is not being properly exploited at the present time. 
However, more and more operators and manufacturers 
are beginning to think in these terms and are starting 
to avail themselves of the opportunities that this tech-
nology can provide. For individual companies this also 
means building up competencies in the application of 
data science algorithms and methods and at the same 
time further developing and expanding their data in-
frastructure systems. The ultimate objective must be to 
embed data science firmly into the company’s structure 
and thinking – along the lines of the set methods that 
have been adopted from the world of lean production, 
such as CIP (continuous improvement process) and 
FMEA (failure mode and effects analysis). Moreover, 
the synergy that comes from growing competence 
and acceptance has a self-amplifying effect – not least 
through the adaptation and enhancement of existing 
business models.
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Fig. 14: Real and predicted height data for a  continuous miner machine

more, these influencing variables are not constant for all 
application scenarios but can vary enormously depend-
ing on the extraction panel. The solution is to generate 
an ML model that is learned from a recorded time span, 
e. g a month, in which the height sensor functioned. 
This means that when no height data are available the 
data from the ML model can be used in order to replace 
the gaps in the data transmission. In Fig. 13 the blue-
coloured  ‘real data’ can be seen in place up until about 
10:10 hrs, backed by the lilac-coloured prediction data 
that then continue to estimate the height of the cutter 
boom and in so doing ensure an interruption-free detec-
tion of the cutting cycle. As in the preceding applica-
tion, the ML model was trained with different machine 
parameters. The purpose of the model is to estimate the 
height of the cutter boom based on these machine pa-
rameters. As Fig. 14 shows this ML tool has proved its 
effectiveness in successfully determining the height of 
the machine boom. 

6 Conclusions and Outlook

While the industry has not yet reached the end of the 
road as far as digitisation is concerned, the applications 
presented here are striking examples of the potential 
that data science technology now has to offer the min-
ing sector – and this will be of benefit to both users 
and manufacturers alike. Companies that are success-
fully taking the heuristic approach in using lean meth-
odology, for example, and so are nearing the limits of 
optimisation, will in particular have access to a whole 
range of options for identifying and quantifying pro-
cess deviations and abnormalities and this will facilitate 
changes and improvements using established practices 
from the world of lean technology. Hard evidence can 
be provided for these best practices and the potential 
of behavioural changes and planned measures can be 
determined in advance and then monitored during 
implementation. However, while the use of explora-
tive visualisation and manual rule-based modelling 
is improving the conditions are also becoming better 
for the application of machine learning systems in real-
life situations. There is valuable support to be had in a 
number of ways. Deviations from normal can for ex-
ample be detected using unsupervised learning models 
without the prior learning of ‘bad cases’ and the failure 
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