Resources & Sustainability
In einem interdisziplinären Ansatz fokussiert dieser Schwerpunkt die Nachhaltigkeitswissenschaften sowie Ressourcennutzung und -management, wie Wasser und Energie. Er behandelt Versorgungssicherheit, Resilienz und zirkuläre Wertschöpfung für eine nachhaltige Zukunft.
Schwerpunktthemen im Forschungsbereich
Nachhaltige Energiekonzepte

Der Themenschwerpunkt "Water & Energy Resources" beschäftigt sich mit der nachhaltigen Nutzung und Optimierung von Wasser- und Energieressourcen. Dabei werden komplexe technische Fragestellungen aus den Bereichen Wasserversorgung, Flussgebietsmanagement, Abfallwirtschaft, Recycling, Abwasserbehandlung sowie Grundwassersanierung untersucht. Im Energiesektor liegt der Fokus auf der Wasserkraftnutzung und dezentralen Energiesystemen. Übergreifend werden Lösungen für eine ressourcenschonende und nachhaltige Zukunft entwickelt, wobei der enge Praxisbezug und die industrielle Anwendungsnähe stets berücksichtigt werden.
Ressourcenschonendes Bauen

Der Themenschwerpunkt "Sustainable Buildings" konzentriert sich auf die Entwicklung ressourcenschonender und umweltfreundlicher Bauweisen. Dabei werden digitale Technologien wie Building Information Modeling (BIM) zur Nachhaltigkeitsbewertung sowie innovative Fertigungstechniken wie robotergestützte, additive Fertigung von Leichtbauteilen erforscht. Zudem wird künstliche Intelligenz genutzt, um umweltfreundliche Entwurfsmethoden zu entwickeln, die die Wiederverwendung regionaler Baumaterialien fördern. Ein weiterer Fokus liegt auf nachhaltigen Sanierungs- und Neubaukonzepten, insbesondere in urbanen Regionen wie der Metropole Ruhr.
Mobilitätswende

Sustainable Mobility adressiert die ökologische Transformation des Verkehrssektors im Kontext der Dekarbonisierung. Im Fokus stehen digitale Mobilitätsdienste wie Sharing-Systeme, die in urbanen Räumen eine höhere Ressourcen- und Flächeneffizienz sowie geringere Emissionen ermöglichen.
In dem Forschungsthema werden dabei Herausforderungen wie kurze Produktlebenszyklen, heterogene Energieversorgungssysteme und fehlende Synergieeffekte zwischen Anbietern untersucht. Ziel ist die Entwicklung nachhaltiger, effizient vernetzter Mobilitäts- und Energiedienste mit zukunftsfähigen Geschäftsmodellen.
Nachhaltige Transformation und Zirkularität

Sustainability Science befasst sich mit den komplexen Wechselwirkungen zwischen Umwelt, Gesellschaft und Wirtschaft im Zeichen globaler Nachhaltigkeitstransformationen. Im Mittelpunkt stehen systemische Ansätze zur Lösung ökologischer, sozialer und ökonomischer Herausforderungen.
Die Forschung ist transdisziplinär ausgerichtet und verbindet wissenschaftliche Erkenntnisse mit praxisorientierten Lösungen. Ziel ist es, resiliente Zukunftspfade zu entwickeln, die gerechte Teilhabe, Ressourcenbewahrung und langfristige Umweltverträglichkeit miteinander vereinen.
Laufende Projekte zu Resources & Sustainability


Projektleitung: Prof. Sven Pfeiffer
Fördermittelgeber: Bundesministerium für Wirtschaft und Klimaschutz (BMWK)
Laufzeit: 03/2022 – 02/2025
Das Ziel des Projekts 3DLight_OnSite besteht darin, die CO2-Emissionen in der Bauindustrie zu reduzieren, indem ein durchgängig CO2-optimierter digitaler Workflow zur Herstellung multifunktionaler Leichtbauteile mit gradienten Eigenschaften entwickelt wird. Die Hauptinnovation besteht darin, Leichtbau im Baubereich durch die Konzeption, Entwicklung und Prüfung der ortsbasierten Herstellung in der additiven Fertigung einzuführen. Es werden Materialien und digitale Planungsmethoden für personalisierte, multifunktionale Leichtbauteile entwickelt, die mithilfe von robotergestützten additiven Verfahren hergestellt werden. Das Projekt überbrückt die Lücke zwischen Grundlagenforschung und industrieller Anwendung, indem die Ergebnisse mit Referenzkomponenten aus der Praxis getestet und validiert werden.
Für weitere Informationen zu diesem Projekt: 3DLight_OnSite
Projektleitung: Prof. Dr.-Ing. Andrej Albert & Thilo Schmidt, M.Sc.
Fördermittelgeber: Bundesministerium für Wirtschaft und Klimaschutz (BMWK)
Laufzeit: 2022 – 2025
Kooperationspartner: Ruhr-Universität Bochum, RWTH Aachen, fischerwerke GmbH & Co. KG
Das Ziel der Initiative "air-Kon-Matrizen" besteht darin, aufblasbare, individuell geformte, ressourceneffiziente Hohlkammermatrizen für die Herstellung von Leichtbau-Fundamenten zu entwickeln. Diese Matrizen sollen in die Schalung von Fundamenten integriert werden, um überschüssigen Beton selektiv zu verdrängen und somit den Energieverbrauch und die damit verbundenen CO2-Emissionen erheblich zu reduzieren.
Die Verantwortung für die Optimierung der Form der Hohlkammermatrizen liegt beim Fachbereich Massivbau der Hochschule Bochum. Dies umfasst den rechnerischen Nachweis der Tragfähigkeit durch nichtlineare FEM-Simulationen und die Anwendung eines Algorithmus auf Grundlage genetischer Programmierung.
Eine schematische Darstellung einer 'air-Kon-Fundamentplatte' unter typischen Lastbedingungen mit maßgeschneiderten Hohlkammermatrizen ist in der beigefügten Abbildung dargestellt.
Projektleitung: Prof. Volker Huckemann
Fördermittelgeber: Bundesministerium für Wirtschaft und Energie (BMWi)
Laufzeit: 03/2020 – 02/2025
Die Georg-August-Universität in Göttingen verwandelt ein im Denkmalschutz stehendes Universitätsgebäude aus dem 19. Jahrhundert in das "Forum Wissen", ein kombiniertes Lehr-, Forschungszentrum und Museum. Seit Januar 2020 wird das Gebäude umfassend renoviert, um seiner neuen Funktion gerecht zu werden, dabei aber sein historisches Erscheinungsbild zu bewahren.
Ein Schlüsselelement der Renovierung ist die Erfüllung der spezifischen Konservierungsanforderungen für das Raumklima des Museums. Um sich vor Sonneneinstrahlung zu schützen, ohne das äußere Erscheinungsbild des Gebäudes zu verändern, wird schaltbares Glas von Merck installiert. Diese Technologie gewährleistet eine natürliche Farbwiedergabe im Inneren und trägt zu einem geeigneten Klima für Ausstellungsstücke und Besucher bei, wobei das ursprüngliche Aussehen des Gebäudes erhalten bleibt.
Das Projekt umfasst die Erforschung des Pilotbetriebs von schaltbarem Glas in einem Museumsumfeld. Dies beinhaltet die Erfüllung klimatischer Anforderungen und die Bewertung der Energieunterschiede im Vergleich zu traditionellen Beschattungslösungen.
Der Erfolg des Projekts wird durch thermische Simulation gemessen. Hierbei wird die TRNSYS-Software verwendet, um einen Museumsabschnitt zu modellieren und das schaltbare Glas zu simulieren. Nach Validierung des Modells mit umfangreichen klimatischen und bautechnischen Parametern dient es als Grundlage für die Untersuchung des Pilotbetriebs des Glases und die Optimierung des technischen Betriebs des Museums.
Weitere Informationen zu diesem Projekt hier.

Projektleitung: Prof. Dr.-Ing. Inka Mueller
Fördermittelgeber: Bundesministerium für Wirtschaft und Klimaschutz
Laufzeit: 2022-2024
Eine aktuelle Problematik der Schallemissionsprüfung ist die Vergleichbarkeit von Schallemissionssensoren unterschiedlicher Hersteller und die Überprüfung der Funktionsfähigkeit der Sensorik im Labor- und Feldeinsatz.
Im Rahmen des Vorhabens sollen zwei Bereiche adressiert werden. Im Bereich der Sensorkalibrierung sollen Vergleiche der verschiedenen favorisierten Verfahren durchgeführt werden. Hierzu sollen Untersuchungen zur Kalibrierung mittels eines Laservibrometers als Referenzmesssystem durchgeführt werden und Untersuchungen mittels direkt angekoppelter Sensoren. Auf Basis dieser Untersuchungen soll eine Spezifikation/Norm vorbereitet werden, die aufzeigt, wie Schallemissionssensoren praktikabel vergleichbar kalibriert und charakterisiert werden können.
Für den Bereich der Sensorverifizierung liegt der Fokus in der Identifikation einer praktikablen Vorgehensweise zur einfachen Nutzung im Labor und im Feld. Der Schwerpunkt liegt auf der Bestimmung der wesentlichen Einflussgrößen auf das Prüfergebnis und die Gestaltung eines Verfahrensprotokolls zur Prüfung der Funktionalität in einem wellenbasierten Ansatz oder in einem Ansatz unter Nutzung der elektromechanischen Impedanz. Dies soll ebenfalls als Grundlage für die Erarbeitung einer Spezifikation/Norm dienen. Der Fokus der Arbeiten der BO liegen im Bereich Sensorverifizierung mittel elektromechanischer Impedanz.
Mit den Erkenntnissen aus dem Projekt soll die Marktdurchdringung der Schallemissionsprüfung durch die Entwicklung von einheitlichen Schnittstellen, Merkblättern, Spezifikationen und Normen unterstützt werden. Gleichsam sollen damit Wege aufgezeigt werden, wie die prekäre Situation der Sensorkalibrierung auf internationaler Ebene überwunden werden kann.

Projektleitung: Prof. Dr. Erik H. Sänger
Förderer: Deutsche Forschungsgemeinschaft (DFG)
Förderzeitraum: 2019 – 2022 (verlängert)
Experimente haben die Sensitivität von Ultraschallwellen für verschiedene Belastungen von Stahlbeton belegt. Analysewerkzeug ist hierbei die Coda-Wellen-Interferometrie (CWI). Beton ist jedoch ein stark heterogenes und dicht gepacktes Verbundmaterial. Aufgrund der hohen Anzahl von streuenden Bestandteilen und Lufteinschlüssen setzt sich die Ausbreitung von Ultraschallwellen in diesem Material aus einer komplexen Mischung von Mehrfachstreuung, Modenkonversion und diffusen Energietransport zusammen. Zum besseren Verständnis des Einflusses von Aggregaten, Porosität und Rissverteilung auf die Ausbreitung elastischer Wellen im Beton und zur Optimierung von Inversionstechniken ist es sinnvoll, den Wellenausbreitungs- und Streuprozess explizit im Zeitbereich zu simulieren. Wir verwenden zu diesem Zweck die “rotated staggered grid” (RSG) Finite-Differenzen-Technik zum Lösen der Wellengleichungen für elastische, anisotrope und / oder viskoelastische Medien.
Das Projekt ist in drei Arbeitspakete unterteilt. Der erste Teil konzentriert sich auf Simulationen im Probenmaßstab (nm - cm - Bereich). In enger Zusammenarbeit mit RUB1, TUM1 und BAM werden wir den Einfluss verschiedener Belastungen (z. B. Druck, Temperatur oder Feuchtigkeit) auf die Coda-Wellen untersuchen. Die von RUB1 entwickelten mikrostrukturellen Modelle und mikro-omographischen Bilder von Beton dienen als Input für Vorwärtssimulationen. Diese werden mit den Laborexperimenten von TUM1verglichen und gemeinsam interpretiert.
Im zweiten Arbeitspaket werden wir Simulationen im Bauteilemaßstab (cm – m – Bereich) durchführen. Ziel ist die numerische Unterstützung von Experimenten der Teilprojekte TUM1, RUB2 und BAM bezüglich der Wellenausbreitung. Ebenso werden die jeweiligen numerischen Verfahren von RUB1 und TUM2 ergänzt. Der Hauptunterschied zum ersten Teilprojekt besteht darin, dass wir jetzt strukturelle Grenzen und großräumige Heterogenitäten einbeziehen. Darüber hinaus bestimmen wir die optimale Platzierung der Ultraschallsensoren.
Das dritte Arbeitspaket zielt darauf ab, die klassische CWI-Technik für Stahlbetonbauteile mit drei Inversionstechniken zu ergänzen, die der Antragsteller bereits auf andere Fälle angewendet hat. Wir werden spezifische Attribute entwickeln, die empfindlich auf die unterschiedlichen Belastungen reagieren. Ein Beamforming-Algorithmus wird uns helfen, die Richtungs- und die Frequenzabhängigkeit der Codawellen zu verstehen. Mit Time-Reverse-Imaging (TRI) können wir Zonen mit relativ hoher Streuung oder andere sekundäre Quellen lokalisieren. Zusammenfassend werden wir CWI mit Hilfe von leistungsfähigen Computersimulationen und der Anwendung von geophysikalischen Inversionstechniken optimieren. Die qualitative und quantitative Langzeitbewertung von Stahlbetonbauteilen wird weiterentwickelt.


Projektleitung: Prof. Dr.-Ing. Jutta Albus
Fördermittelgeber: DBU Deutsche Bundesstiftung Umwelt
Laufzeit: 2022-2024
Angesichts der brennenden ökologischen Fragen unserer Zeit kann sich der Planungs- und Bausektor nicht mehr damit zufriedengeben, den negativen Einfluss der Bautätigkeit zu minimieren. Vielmehr muss das visionäre Ziel von positiven Gebäuden und Quartieren verfolgt werden, um den ökologischen Wandel im Gebäudesektor zu beschleunigen. Das Forschungsprojekt soll in diesem Kontext eine ehrliche Definition des „positiv Bauens“ generieren, bei der möglichst viele Handlungsfelder betrachtet und deren Wechselwirkungen kritisch analysiert werden. Auch Grenzen des positiven Bauens sollen transparent dargestellt werden.
Im Rahmen des Forschungsprojektes werden folgende Handlungsfelder differenziert bearbeitet: Material, Energie, Wasser, Grün, Gesellschaft und Mobilität. Die gleichzeitige Berücksichtigung der genannten sechs Handlungsfelder bietet ein enormes Potenzial, um die Nachhaltigkeitsziele im Bauwesen zu erfüllen. Damit werden Synergieeffekte genutzt, die sich aus der integrierten Betrachtung der einzelnen Bereiche ergeben.
Bestehende Umsetzungsstrategien dienen als Grundlage, um neue, innovative Lösungsansätze zu entwickeln und auf ihre Tauglichkeit im Kontext von geplanten Quartiersentwicklungen zu bewerten. Wenn die entwickelten Lösungsansätze zur Erreichung des definierten Ziels geeignet sind, werden sie in einen Handlungsleitfaden übernommen, um neue Projekte ganzheitlich zu verwirklichen, in allen Handlungsfeldern weitestgehend positive Umweltwirkungen zu generieren und dabei bezahlbaren Wohnraum zu schaffen. Um die Zieleinhaltung stetig im Planungsprozess zu überprüfen und Entscheidungsprozesse zu lenken, wird weiterhin ein multikriterielles Bewertungstool aufgesetzt.
Zur Validierung der Handlungsempfehlungen und des Bewertungstools wird das Forschungsprojekt an ein konkretes Praxisprojekt, ein neues Quartier bei Bamberg, gekoppelt und mit Praxispartnern umgesetzt. Der Fokus liegt dabei auf der Planungsphase, die wissenschaftlich begleitet werden soll. In enger Abstimmung zwischen den Forschenden und den Planungsbeteiligten des Praxisprojekts werden Umsetzungsstrategien zum Bauen mit positiven Umweltwirkungen für die oben genannten Handlungsfelder integrativ erarbeitet, entwickelt und im Hinblick auf die Übertragbarkeit auf weitere Projekte aufbereitet, damit diese für ähnliche Folgeprojekte anwendbar und nutzbar sind. Bei zukünftigen (Wohnungs-) Neubauten sollen somit die Potenziale eines möglichst positiven Bauens in Bezug auf Material, Energie, Wasser, Grün, Gesellschaft und Mobilität genutzt werden können, anstatt negative Umweltwirkungen des Bauens nur zu reduzieren.
Das Forschungsprojekt leistet somit einen Beitrag zur Umsetzung und Weiterentwicklung des „Regenerative Designs“ auf Gebäude- bzw. Quartiersebene mit dem Ziel, Strategien für die Umsetzung von in ökologischer und sozialer Hinsicht positiven Bauweisen aufzuzeigen.

Projektleitung: Prof. Dr. Peter Hense und Prof. Dr.-Ing. Semih Severengiz
Fördermittelgeber: Ministerium für Wirtschaft, Industrie, Klimaschutz und Energie, Land NRW
Laufzeit: 2023-2024
Mit dem Projekt EcoTecHub Bergkamen entsteht im Kreis Unna ein Innovations- und Technologiezentrum („Hub“) für nachhaltige Wertschöpfung. Hier begleitet das EcoTecHub künftig Unternehmen bei der Gestaltung nachhaltiger Transformationsprozesse vor dem Hintergrund des Strukturwandels in der ehemaligen Steinkohlekraftwerksregion Bergkamen. Das Projektvorhaben befasst sich primär mit Innovationen im Bereich Kreislaufwirtschaft und Defossilisierung, der thematische Schwerpunkt liegt in den Bereichen Energie und Materialien.
Mit der Entstehung des EcoTecHubs leistet das Projekt einen aktiven Beitrag an der Transformationsgestaltung der ehemaligen Kohleregion Kreis Unna hin zu einer innovativen und zukunftsgerichteten Region. Durch die enge Zusammenarbeit mit den Hochschulen in Bochum und Gelsenkirchen schafft das Projekt in der Region einen dauerhaften Know-How-Transfer mit der Angewandten Forschung (der Kreis Unna verfügt selbst über keinen öffentlichen Universitäts- oder Hochschulstandort). Der EcoTecHub verknüpft Entwicklungs-, Produktions-, Recycling- und Digitalisierungskompetenzen und bietet auf diese Art ein in der Region einzigartiges Angebot für Forschung und Entwicklung in den Bereichen Kreislaufwirtschaft und Defossilisierung. Das EcoTecHub befasst sich u. a. mit den Kreislaufperspektiven von Wasserstofflösungen für die Industrie, oder forscht an der Optimierung des (chemischen) Recyclings von Kunststoffprodukten und -teilkomponenten.
Dem Projekt EcoTecHub ist eine 14-monatige Vorstudie im Zeitraum Oktober 2023 – Dezember 2024 vorgestellt. In dieser Laufzeit untersuchen Forschungsteams der Hochschule Bochum und der Westfälischen Hochschule, inwieweit der EcoTecHub mit den Schwerpunkten Kreislaufwirtschaft und Nachhaltigkeit in der Region verankert werden kann, damit sich die Stadt Bergkamen für eine Förderung durch das 5-StandorteProgramm qualifizieren kann. Im Rahmen des Projektes werden unter anderem Analysen zur Identifikation von Bedarfen, Anforderungen und Potenziale von Unternehmen in der Region durchgeführt. Ein Ziel ist dabei die Untersuchung von standortspezifischen und strukturrelevanten Aspekten unter Einbindung von Ideen und Vorstellungen der heimischen Wirtschaft für den Aufbau und dauerhaften Betrieb des Technologiehubs. Die Forschenden erarbeiten überregionale, langfristige und strategische Projektinhalte, die durch ansässige Unternehmen aktuell noch nicht adressiert werden, aber großes (Innovations-)Potenzial für die Region und darüber hinaus zeigen. So werden Entwicklungs- und Umsetzungsszenarien sowie ein Finanzierungs- und Betreibermodelle entwickelt, welche die Zukunftsfähigkeit der Akteure, Produkte und Prozesse des Standortes Bergkamen durch den Aufbau eines regionalen Technologie- und Wissenstransferhubs optimieren.

Projektleitung: Prof. Dr.-Ing. Jutta Albus
Fördermittelgeber: Zukunft Bau Forschungsförderung / Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR) im Bundesamt für Bauwesen und Raumordnung
Laufzeit: 10/2023-09/2025
Die Senkung des Energiebedarfs im Wohnungsbestand Deutschlands ist eine zentrale Aufgabe der nächsten Jahre. Dazu muss die Sanierungsquote rapide gesteigert werden. Hierfür benötigt es kostengünstige und materialsparende Lösungen. In einer umfassenden Untersuchung wird der Lebenszyklus typischer Bestandswohngebäude betrachtet. Dabei werden, anders als üblich, auch die am konkreten Standort vorhandenen Optionen der Energieversorgung, die graue Energie der Baumaßnahmen sowie der Aufwand für den Betrieb und - bisher noch kaum beachtet - die Bandbreite des zu erwartenden Nutzerverhaltens berücksichtigt. Der Energieverbrauch wird zu diesem Zweck über thermische Simulationen ermittelt. Dieser Methode liegt die These zugrunde, dass durch diese ganzheitliche Betrachtung, die das Nutzerverhalten und den Einsatz für Technik und Betriebsenergie mit betrachtet, Sanierungslösungen gefunden werden können, die in der Praxis wirksam den Energiebedarf senken. Die Forschenden erwarten dabei Sanierungslösungen, die weniger kosten, aber im Vergleich zu einer EH55 Sanierung, genauso viel CO2 einsparen. Dadurch wird die vorhandene Leistungskraft der Bauwirtschaft auf viele kleinere, ökologisch und ökonomisch sinnvolle Maßnahmen verteilt und so größere Fortschritte bei der CO2-Einsparung ermöglicht. Gepaart mit den richtigen Anreizen aus der Politik und einem konsequenten Umbau der Energieversorgungsstruktur könnten die gesteckten Ziele damit erreichbarer werden. Die Ergebnisse werden, ähnlich wie beim Vorgängerprojekt "Einfach Bauen", als Leitfaden in leicht verständlicher Form für Interessierte zusammengefasst.


Projektleiter: Dr. Alexandra Lindner
Laufzeit: 12/2023 – 11/2024
Fördermittelgeber: Bundesministerium für Wirtschaft und Klimaschutz (BMWK)
Die Start-up-Strategie der Bundesregierung zielt darauf ab, die Start-up-Szene durch die Stärkung von Gründerinnen und die Förderung von Diversität zu stärken. Die Gründerinnenquote in Deutschland verzeichnet mit 20 Prozent im Vergleich zum Bundesdurchschnitt eine erhöhte und in den letzten Jahren eine zunehmende Tendenz. Dies ist teilweise auf das Engagement von Gründungsnetzwerken zurückzuführen, die vielfältige Angebote zur Sensibilisierung, Förderung und Vernetzung von Frauen in der Gründerszene bereitstellen.
Mit der Einführung von EXIST-Women erhalten gründungsinteressierte und gründungsaffine Frauen an Hochschulen die Gelegenheit, sich frühzeitig mit den Themen Gründung und berufliche Selbständigkeit vertraut zu machen. Ziel ist es, das Engagement der Gründungsnetzwerke an Hochschulen zu verstärken, um Frauen verschiedener Hintergründe für das Thema Gründung zu motivieren. Dazu zählen Absolventinnen, Wissenschaftlerinnen, Studentinnen sowie Frauen mit Berufsabschluss und Bezug zur Hochschule, wie beispielsweise Technische Assistentinnen, Chemisch-technische Assistentinnen und Verwaltungsfachangestellte.
EXIST-Women umfasst verschiedene Fördermöglichkeiten:
- Veranstaltungsangebote: Es werden Veranstaltungen organisiert, die darauf abzielen, Frauen für das Thema Gründung zu sensibilisieren und sie mit relevanten Ressourcen und Netzwerken vertraut zu machen. Alle 14 Tage finden Vorträge und Workshops zu Themen rund um den Unternehmensaufbau, Persönlichkeitsbildung sowie Netzwerkveranstaltungen statt.
- Beratungs- und Betreuungsangebote: Es werden Beratungs- und Betreuungsdienste angeboten, um angehenden Gründerinnen bei der Entwicklung ihrer Geschäftsideen und der Umsetzung ihrer Gründungsprojekte zu unterstützen. Für die Durchführung von Veranstaltungen sowie spezialisierten Beratungsangeboten stehen der Hochschule 10.000 Euro Budget zur Verfügung.
- Finanzielle Zuschüsse: Angehende Gründerinnen erhalten finanzielle Unterstützung in Höhe von bis zu 2.500 Euro sowie Sachmittel im Wert von 2.000 Euro, um ihre Gründungsvorhaben voranzutreiben und die ersten Schritte in die Selbständigkeit zu erleichtern. Aktuell befinden sich 10 angehende Gründerinnen in der Fördermaßnahme mit Gründungsideen, die von sehr frühphasig bis kurz vor der Gewerbeanmeldung variieren.
Weitere Infos zum Projekt here.
Projektleitung:Prof. Dr.-Ing. Andreas Dridiger und Alexander Kremer M.Sc.
Laufzeit: 06.2024 - 05.2026
Kooperationspartner: AVG Mineralische Baustoffe GmbH / GNF Berlin-Adlershof e.V. / Hochschule Bochum
Fördermittelgeber: BMWK - Bundesministerium für Wirtschaft und Klimaschutz (im Rahmen des Zentralen Innovationsprogramms Mittelstand (ZIM))
Der Estrich ist ein kritisches Gewerk im Bauablauf. Während seiner Erhärtung und Trocknung können kaum andere Gewerke fertiggestellt werden. Bodenbeläge dürfen erst verlegt werden, wenn der Restfeuchtegehalt im Estrich nicht wesentlich vom späteren Feuchtegehalt während der Nutzungszeit abweicht. Die Trocknung dieser überschüssigen Feuchtigkeit ist ein komplexer Vorgang, der von vielen Faktoren beeinflusst wird. Das Nichterreichen der Belegreife zum geplanten Zeitpunkt führt vor allem in den Sommermonaten häufig zu Verzögerungen im Bauablauf.
Ziel des Projektes ist die Entwicklung eines Fließestrichmörtels auf Basis von Calciumsulfoaluminatzement unter Verwendung von aufbereiteten hydraulisch wirksamen RC-Gesteinskörnung und Portlandzement, der die Belegreife wesentlich schneller erreicht als alle derzeit auf dem Markt erhältlichen Produkte, gleichzeitig jedoch die hohen derzeitigen Anforderungen an Estrichmörtel vollends erfüllt. Dabei wird angestrebt den Anteil des Portlandzementes gering zu halten oder ganz durch das RC-Material zu ersetzen, wodurch der CO2-Fußabdruck des Fließestrichmörtels verbessert werden soll.

Projektleitung: Prof. Dr.-Ing. Semih Severengiz
Geldgeber: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV)
Volumen (in €): 907.022,01
Laufzeit: 01/2023 – 12/2025
Kooperationspartner: Green Power Brains, SFC Energy und Don Bosco Solar
In den afrikanischen Ländern südlich der Sahara, darunter auch Ghana, stehen die nationalen Stromnetze vor Herausforderungen, die zu einem unzuverlässigen Zugang zu Elektrizität führen. Trotz der Entwicklung Ghanas werden im Jahr 2020 nur 86% der Bevölkerung Zugang zu Elektrizität haben. In ländlichen Gebieten liegt die Elektrifizierungsrate mit 28,5 Prozent noch niedriger. Die Auswirkungen des Klimawandels wie Dürren und niedrige Wasserstände des Akosombo-Staudamms belasten die Stromversorgung zusätzlich, die häufig durch fossile Brennstoffe ersetzt wird, was den CO2-Ausstoß erhöht.
Das Projekt GH2GH geht diese Probleme an, indem es sich auf grüne Wasserstofftechnologie für dezentrale Energiesysteme konzentriert. In einem Pilotprojekt in Tema, Ghana, werden ein Elektrolyseur und ein Speichersystem in ein bestehendes Mini-Solarnetz integriert. Dieser grüne Wasserstoff versorgt eine Brennstoffzelle in Zeiten ohne Sonneneinstrahlung, fördert die Energieautarkie und verringert die Abhängigkeit von Dieselgeneratoren.
Das Projekt wird den Lebenszyklus, die soziale Akzeptanz und die Nachhaltigkeit des Systems im Vergleich zu Batterien bewerten. Ziel des vom Bundesministerium für Bildung und Forschung geförderten Projektes ist es, ein umfassendes Netzwerk aufzubauen, rechtliche und administrative Hürden abzubauen und die Technologie für eine breitere Anwendung zu exportieren.


Projektleitung: Prof. Dr. Stephan Sommer
Fördermittelgeber: Bundesministerium für Wirtschaft und Klimaschutz (BMWK)
Laufzeit: 2022 – 2025
Kooperationspartner: UFZ Leipzig
Für das langfristige Gelingen der Energiewende ist es entscheidend, dass diese gerecht gestaltet wird. Bei der Standortwahl für Infrastruktur zur erneuerbaren Stromerzeugung und -verbreitung spielen Gerechtigkeitsaspekte besonders durch die räumliche Varianz damit verbundener lokaler Kosten (z. B. Lärmemissionen) und Nutzen (z. B. regionale Wertschöpfung) eine wichtige Rolle. Diese räumliche Ungleichverteilung lokaler Effekte kann zum Widerstand gegen Energieinfrastrukturprojekte beitragen.
In diesem Zusammenhang behandelt das Vorhaben die Frage, wie Verteilungsgerechtigkeit zwischen Regionen auch bei der Steuerung des Ausbaus erneuerbarer Energieinfrastruktur mitgedacht werden kann und sollte. Dazu wird erarbeitet, wie interregionale Verteilungsgerechtigkeit auf den räumlichen Ausbau von Energieinfrastruktur angewendet werden kann, zu welchen Verteilungs- und Effizienzwirkungen sie in der Praxis führt und wie sie regulatorisch umsetzbar ist.
Das Vorhaben umfasst dazu die konzeptionelle Aufarbeitung verschiedener Gerechtigkeitsansätze sowie deren empirische Anwendung auf den Ausbau erneuerbarer Energieinfrastruktur in Deutschland. Durch die enge Zusammenarbeit mit Partner:innen aus der Praxis werden die Projektergebnisse hinsichtlich ihrer Relevanz für und Anwendbarkeit auf die Praxis kritisch analysiert. Der Einbezug von Bürger:innen im Rahmen einer Befragung ermöglicht außerdem die Berücksichtigung der öffentlichen Präferenzen zu verschiedenen Gerechtigkeitskonzepten. Die abschließend erfolgende rechtliche und ökonomische Instrumentenanalyse zur Umsetzung verschiedener Gerechtigkeitskonzepte beim Ausbau von Energieinfrastruktur stellt damit eine fundierte wissenschaftliche Grundlage für politische Entscheider:innen dar.
Weitere Informationen zu diesem Projekt hier.

Projektleitung: Prof. Dr.-Ing. Andrej Albert & Clara Walsemann, M.Sc.
Laufzeit: 2023 – 2025
Fördermittelgeber: Deutsche Bundesstiftung Umwelt
Der Baustoff (Stahl)beton dominiert nach wie vor die weltweite und deutsche Baubranche. Bei der Herstellung von einer Tonne des für Beton benötigten Zementes werden 0,61 t CO2 freigesetzt. Allein im Hochbau werden weltweit etwa 2,5 Mrd. Tonnen Zement verbraucht. Davon entfallen allein 55 % und somit ca. 1,4 Mrd. Tonnen Zement und 0,83 Mrd. Tonnen CO2 auf Decken und Fundamente im Hochbau.
Eine Lösung zur Reduktion des Betoneinsatzes in Decken und Fundamenten bieten Hohlkörper mit einem Einsparpotenzial an Material und CO2 von bisher ca. 25 % gegenüber massiven Betondecken. Nachteil bisheriger Hohlkörper-Systeme ist jedoch die deutliche Reduktion der Querkrafttragfähigkeit gegenüber Betonmassivdecken, sodass sich der effektive Einsatzbereich auf ca. 60 % der Decken- bzw. der Fundamentfläche verringert. Dadurch weist die Leichtbauweise mit Hohlkörpern bisher häufig Kostennachteile gegenüber massiven Decken/Fundamenten auf. Trotz der Umweltvorteile von Hohlkörpersystemen wird daher weiterhin der weitaus größte Teil der Decken und Fundamente in massiver Bauweise ausgeführt.
ZentralesZiel des Projektes ist es, die Querkrafttragfähigkeit von zweiachsig gespannten Hohlkörperdecken und -fundamenten um 50 % zu steigern und auf diese Weise das Einsatzgebiet der Hohlkörpertechnologie sowie das Einsparpotenzial hinsichtlich Material und CO2 zu maximieren. Dieses Ziel soll erreicht werden durch ein neues geometrisches Prinzip der Hohlkörpertechnologie. Es handelt sich um kegelstumpfförmige Hohlkörper, die mit der „spitzen“ Seite alternierend nach oben und nach unten eingebaut werden und so exakt den Kraftfluss in Decken/Fundamenten abbilden. Durch die erhöhte Querkrafttragfähigkeit der neuen Hohlkörper-Technologie wird der Einsatz auch in Bereichen nahe von Wänden und Stützen ermöglicht. Dadurch erhöht sich der Einsatzbereich auf bis zu 80 % der gesamten Decken-/Fundamentfläche. Über diesen Ansatz werden bis zu 40 % des eingesetzten Betons in Decken und Fundamenten eingespart. Zudem sollen sie erstmals auch klare Kostenvorteile gegenüber Massivdecken aufweisen, so dass sie flächendeckend in die Anwendung überführt werden können und eine schnelle, akute und hohe Umweltwirkung erzielen.


Projektleitung: Prof. Dr. Haydar Mecit
Fördermittelgeber: Bundesministerium für Bildung und Forschung, Programm FH-Impuls (Förderkennzeichen: 13FH0I93IA)
Laufzeit: 07/2022 – 12/2024
Ziel: Fortschritt und Umsetzung von Smart City-Anwendungsfällen in den Bereichen Smart Environment, Smart Mobility & Smart Energy als potenziell replizierbare Leitbilder.
Aufbauend auf früheren Studien entwickelt HpSCiLivLabs Teile eines Smart City-Forschungslabors als gemeinsamen Raum für verschiedene Stakeholder der Smart City. In diesen Workshops werden datengesteuerte Simulationen, Prototypen und Ansätze mit Digital Twins genutzt, um Teilnehmer aus verschiedenen Sektoren (wie Wissenschaft, Wirtschaft und Kommunalverwaltung) in einer innovativen Arbeitsumgebung zusammenzubringen.
Der Fokus liegt nun auf der Fertigstellung und Erweiterung von Smart City-Real Labs (hauptsächlich Sensoren und Daten aus städtischen Räumen), die zuvor für Tests und Validierungen eingerichtet wurden. Ein zentrales Element ist eine teilweise vorhandene und sich entwickelnde Smart City-IT-Plattform, die Datenquellen aus den Real Labs mit dem Forschungslabor verbindet. Diese Plattform wird die weitere Verarbeitung und Analyse von Daten erleichtern, um Smart City-Anwendungsfälle in den Bereichen Umwelt, Mobilität und Energie zu verbessern, unter Verwendung moderner Visualisierungs- und Kollaborationsmethoden.
Projektkonsortium:
- Hochschule Bochum, Institut für Elektromobilität und Labor für Nachhaltigkeit in der Technologie
- Fachhochschule Dortmund
- Westfälische Hochschule Gelsenkirchen, Institut für Internetsicherheit
Industrie- und öffentliche Institutionen:
- Stadtwerke Herne AG
- Straßenbahn Herne-Castrop-Rauxel GmbH
- Wirtschaftsförderungsgesellschaft Herne mbH
- Stadt Herne, Amt für Digitalisierung
Weitere Informationen zu dem Projekt hier.

Projektleitung: Prof. Dr. Stephan Sommer
Fördermittelgeber:Deutsche Bundesstiftung Umwelt (DBU)
Laufzeit: 2023 – 2024
Die drei Ruhrgebietshochschulen für angewandte Wissenschaften, die Hochschule Bochum, die Fachhochschule Dortmund und die Westfälische Hochschule bündeln ihre Kompetenzen, um in dem gemeinsamen Forschungs- und Transferprojekt „Nachhaltige IGA 2027“ ein integratives Nachhaltigkeitskonzept für Großveranstaltungen zu entwickeln. Die Internationale Gartenschau (IGA) in der Metropolregion Ruhr im Jahr 2027 dient dabei als Reallabor. Sie verfolgen das Ziel, das Thema Nachhaltigkeit in besonderer Durchdringung und Tiefe bei der Planung, Durchführung und Nachnutzung von Großveranstaltungen zu verankern. Integrativ ist das Konzept, weil das Mitdenken der Nachhaltigkeitsaspekte und die Handlungsempfehlungen von Anfang an direkt in den unterschiedlichen Prozessen innerhalb der verschiedenen zeitlichen Phasen (z.B. bei den Ausschreibungen) ansetzen und es die folgenden drei Aspekte miteinander verbindet: (1) Nutzung der Umweltentlastungspotenziale, (2) Gestaltung der Gartenschau als Lernort für Nachhaltigkeit, (3) frühzeitige Einbindung direkt beteiligter Institutionen sowie weiterer, indirekt beteiligter Stakeholder (z.B. Stadtgesellschaften) zur Integration der Gartenschau selbst und ihrer Intention in die Sozialstrukturen vor Ort. Insgesamt soll das Nachhaltigkeitskonzept sechs Handlungsfelder umfassen: Ressourcen & Klimaschutz, Kreislaufwirtschaft & Nachnutzung, Nachhaltige Mobilität, Nachhaltige Beschaffung, Bildung für nachhaltige Entwicklung und Kommunikation & Partizipation.

Projektleitung: Prof. Dr. Carla J. Vogt
Fördermittelgeber: Deutsche Forschungsgemeinschaft (DFG)
Laufzeit: 2025-2026
Im Projekt werden die Effekte heterogener Ungleichheitsaversion auf Pfade optimaler Klimapolitik in integrierten Bewertungsmodellen untersucht. Zentrale Fragestellung ist, wie sich die Ergebnisse bzgl. des optimalen Temperaturanstiegs gegenüber Standardpräferenzen ändern. Außerdem wird untersucht, wie heterogene Ungleichheitsaversion sich auf die Chancen internationaler Koalitionsbildung auswirkt.
Projektleitung: Prof. Dr.-Ing. Jutta Albus
Fördermittelgeber: Zukunft Bau Forschungsförderung, Bundesinstitut für Bau-, Stadt- und Raumforschung
Laufzeit: Okt 2023 - Okt 2025
Weitere Projektpartner:
Bundesverband der Deutschen Ziegelindustrie e.V.
Gipsbauplatten haben mit einer Produktion von über 233 Mio. m² pro Jahr in Deutschland einen maßgebenden Einfluss auf den Gipsverbrauch mit steigender Tendenz. Die Verfügbarkeit von Gips nimmt mit der zunehmenden Schließung von Kohlekraftwerken (80 % sind REA-Gips) und der sinkenden Verfügbarkeit aus Primärlagerstätten drastisch ab. Somit ist eine alternative Bauweise zur Errichtung nichttragender Innenwände mit geringem CO2 Footprint sowie Energiebedarf zur Herstellung unter Nutzung regionaler und nachwachsender Materialressourcen dringend erforderlich. Mittels des anvisierten Forschungsvorhabens soll ein Beitrag zur ressourceneffizienten Kreislaufwirtschaft und zur Ressourcenschonung geleistet, und der Einsatz rohstoffintensiver Verfahren vermieden werden. Gleichzeitig zielt das Projekt darauf ab, bautechnische Verbesserungen (baukonstruktiv, bauphysikalisch) zur Einsparung des betrieblichen Energiebedarfs im Neu- und Bestandbau zu erreichen. Das Forschungsvorhaben untersucht die Entwicklung von Hochlochlehmbausteinen zum einen auf Werkstoffebene. Dabei stehen materialtechnische Eigenschaften im Hinblick auf die Realisierung eines maßhaltigen, dauerhaften und kreislauffähigen Produkts
durch den Einsatz natürlicher, nachhaltiger Zusatzstoffe sowie die Anpassung des Herstellverfahrens im Fokus. Zum anderen wird der Einsatz der Hochlochlehmbausteine im Hinblick auf baukonstruktive Anforderungen überprüft. Aspekte wie Fügung der Bausteine, Montage, Verputzen und Rückbau sowie architektonische Gestaltungsmöglichkeiten werden auf Potentiale, ggf. Einschränkungen für Neu- und Bestandsbauten auch während der Betriebsphase untersucht und mittels Lebenszyklusanalyse überprüft. Der Baustoff Lehm birgt ein hohes Kreislaufpotential. Um den drängenden Fragen nach zukunftsfähigen Lösungsansätzen im Bauen nachzukommen, wird eine alternative Herangehensweise zur konventionellen Trockenbauwand auf Grundlage einer ressourcensparenden, zirkulären Bauweise etabliert.
Projektleitung: Prof. Dr.-Ing. Inka Mueller
Fördermittelgeber: Deutsche Forschungsgemeinschaft (DFG)
Laufzeit: 2020 – 2025
Unter Structural Health Monitoring (SHM) werden kontinuierliche oder periodische und automatisierte Methoden zur Bestimmung und Überwachung des Zustandes eines Überwachungsobjektes innerhalb der Zustandsüberwachung verstanden. Diese erfolgt durch Messungen mit permanent installierten bzw. integrierten Aufnehmern und durch Analyse der Messdaten.
Um Structural Health Monitoring Systeme ganzheitlich bewerten und für gesellschaftlich relevante Projekte wie zivile Infrastruktur einsetzen zu können, fehlen derzeit Methoden zur Gütebestimmung dieser Systeme, die über einen Test am spezifischen Anwendungsbeispiel hinausgehen. Insbesondere für den Bereich des SHM basierend auf geführten Wellen gibt es bislang keine etablierte Vorgehensweise zur Qualifizierung der Systeme, sodass dies den Fokus des beantragten wissenschaftlichen Netzwerks bildet.
Wellenbasierte, aktive SHM-Systeme sind thematisch mit klassischen Ultraschallverfahren verknüpft. Für diese Verfahren liegen Methoden zur Gütebestimmung vor. Jedoch gibt es eine Reihe von Unterschieden. Entscheidend ist beispielsweise, dass SHM-Systeme feste Sensorpositionen aufweisen, die eine Ortsabhängigkeit des Ergebnisses zur Schadensdetektion nach sich ziehen. Zudem ermöglichen viele wellenbasierte SHM-Systeme die Ausgabe einer Reihe von schadensrelevanten Parametern wie Schadensort, Schadensgröße etc. Hier scheint die Reduktion der Daten auf einen festen Wert des Schadensindikators, wie es für das klassische Verfahren zur Gütebestimmung in der zerstörungsfreien Prüfung notwendig ist, nicht sinnvoll. Diese Unterschiede als Mehrwert auch in der Gütebestimmung nutzbar zu machen, ist aus Sicht der Mitglieder zwingend erforderlich.
Ziel des wissenschaftlichen Netzwerks ist es daher, durch themenbezogenen Austausch ein gemeinsames Verständnis für die aktuellen Probleme in der ganzheitlichen Gütebestimmung von wellenbasierten SHM-Systemen zu entwickeln, gemeinsam Lösungsansätze zu diskutieren, diese zu publizieren und als Grundlage für mögliche zu beantragenden Forschungsprojekte auszuarbeiten.

Projektleitung: Prof. Dr.-Ing. Jutta Albus
Fördermittelgeber: DBU Deutsche Bundesstiftung Umwelt
Laufzeit: 2022-2024
Das Forschungsprojekt stellt die Entwicklung von vorgefertigten Bauteilen oder Baugruppen in Hybridbauweise in den Fokus, die basierend auf einem durchgängig digitalen Planungs- und Produktionsprozess eine höhere konstruktive Flexibilität und gestalterische Varianz erreichen, und damit zur Verbesserung der nachhaltigen Nutzung von Gebäuden beitragen. Ausgehend von einem adaptiv-assoziativen Bausystem werden vorgefertigte, dreidimensionale Raummodule aus Boden und Wand (z.B. U-Element oder L-Element aus Beton) mit linearen Tafelelementen(Wand/Boden/Decke-Elemente aus Holz, Stahl, Beton oder Holz-Beton-Verbund) und punktförmigen Elementen (Stützen etc.) systematisch in einer Planungsleistung kombiniert und im Hinblick auf eine automatisierte Produktion baukonstruktiv entwickelt, sodass eine große Bandbreite an Lösungsansätzen für mehrgeschossige Gebäudetypologien ermittelt werden kann. Alleinstellungsmerkmal des Forschungsansatzes ist der komplementäre Mittelweg aus Raummodul- und Elementbauweise im Hinblick auf eine offene, adaptive Bauweise, die dem komplexen Anforderungsgeflecht heutiger Planungsaufgaben durch eine hohe Flexibilität sowohl in der materialkonstruktiven Ausführung als auch der gestalterischen Varianz entspricht.
Dabei zielt die Forschungsleistung insbesondere auf eine Systemoffenheit ab. Für ein „nachhaltig offenes System“ muss eine Balance zwischen Flexibilität und damit einer Adaptivität auf der einen Seite und Systematisierung auf der anderen Seite gefunden werden, so dass eine Anwendbarkeit sowohl im Bestand als auch im Neubau möglich ist.
Standardisierte, seriell gefertigte Elemente bilden die Grundlage einer Bauweise, die durch sparsamen Materialeinsatz und reversible Fügungen individualisierbare architektonische Lösungen realisierbar macht. Die Schnittstelle zwischen digitalem Gestalten und automatisierter Fertigung bildet in diesem Zusammenhang einen Schwerpunkt.
Um die genannten Anforderungsparameter einer Bauaufgabe in den Planungsprozess zu überführen, miteinander in Beziehung zu setzen und diese schließlich für den Planer zugänglich zu machen, wird ein Projekt über ein digitales Entwurfswerkzeug im Sinne eines ganzheitlichen Prozesses vorbereitet (digitale Gestaltung von Prozessen) und über die einzelnen Leistungsphasen bis hin zur (teil-)automatisierten Fertigung (Automatisierung der Fertigungstechnologie) ausgearbeitet. Eine neuartige, digitale Planungsmethodik ermöglicht die Kombination von dreidimensionalen (Raum-)Einheiten mit zweidimensionalen Komponenten als offene Konstruktionstypologie.
Somit schließt das zukunftsfähige Konzept erfolgreich die existierende Lücke zwischen Planung und Produktion. Durch die Neugestaltung einer Prozessstruktur, deren Schwerpunkt in der digitalen Verknüpfung von Planungsparametern liegt, entsteht ein präziser Datenaustausch, der sowohl die Planer bei der Entscheidungsfindung unterstützt als auch die Ineffizienz tradierter Abläufe in der Produktion überwindet.



Projektleitung: Prof. Dr.-Ing. Semih Severengiz
Fördermittelgeber: Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU)
Laufzeit: 08/2020 – 03/2023 (verlängert)
MoNaL zielt darauf ab, nachhaltige Mobilitätslösungen für Länder in Subsahara-Afrika zu etablieren. Das vom BMU im Rahmen des Programms "Exportinitiative Umwelttechnologien" geförderte Projekt (mit einem Zuschuss von 397.382,00 €) berücksichtigt umfassend die gesamte Lebenszykluswirkung – von der Fahrzeugproduktion und -gestaltung bis hin zur Energieversorgung und zum Recycling von Fahrzeugen und Energieinfrastruktur. Eine Pilotumsetzung in Ghana, am Standort des lokalen Partners Don Bosco, beinhaltet den Test eines Systems zur Vermietung von Elektromopeds und Lastenrädern. Diese Initiative passt sich den lokalen Bedingungen und Benutzeranforderungen an. Nachhaltige Mobilität ist mit erneuerbarer Energie verbunden, was zur Entwicklung eines intelligenten Mini-Netzes führt, das von unabhängigen Solarinstallationen und Ladestationen betrieben wird.
Das Mini-Netz, ein Bestandteil des Projekts, verfügt über eine automatische Abrechnung, die Echtzeitanpassungen der Strompreise ermöglicht, basierend auf Faktoren wie Angebot, Nachfrage, Wetter und Batteriestatus. Das Ziel ist es, die Nutzung nachhaltiger Mobilitätsalternativen zu intensivieren, unter Berücksichtigung eines zuverlässigen und nachhaltigen Zugangs zu Energie. Um das Problem des Elektroschrotts im Zielland anzugehen, bezieht das Projekt die End-of-Life-Phase des entwickelten Produktsystems mit ein. Es umfasst die Analyse bestehender Recyclingstrukturen in Ghana, die Erkundung von Optionen für Zweitverwendungen von Solarmodulen und Batterien, die Organisation von Workshops mit lokalen Interessengruppen zur Entwicklung von Umweltstandards sowie Schulungen in Recycling und Upcycling. Qualifizierungsmaßnahmen in den Bereichen Elektromobilität, Solartechnologie und Recycling gewährleisten die nachhaltige Nutzung des Produkts.

Projektleitung: Prof. Dr. Petra Schweizer-Ries
Laufzeit: 10/2020 – 09/2024
Koop-Partner: Deutsche Gesellschaft für Sonnenenergie (DGS), Landesverband Berlin (Konsortialleitung)
Im Mittelpunkt des Moduls MonDoWi an der Hochschule Bochum steht die Förderung von Kooperationen im Energiesektor. Zentrale Aspekte sind
- Verknüpfung von Wissenschaft und Praxis: Es bringt Forschungsteams mit Handwerkern, Unternehmen und Politikern zusammen, um die Energiewende zu unterstützen.
- Förderung des gesellschaftlichen Wandels: Das Modul erleichtert Diskussionen und Kooperationen für größere Veränderungen im Energiesektor.
- Kommunikationsbarrieren überwinden: Angesichts der Herausforderungen in der Kommunikation werden Experten einbezogen, um effektive Kommunikationsräume zu schaffen, sowohl physisch als auch virtuell.
- Globaler und praktischer Fokus: In Übereinstimmung mit den Zielen für nachhaltige Entwicklung liegt der Fokus auf globaler Zusammenarbeit und praktischen Anwendungen im Bereich der energetischen Nachhaltigkeit.
- Ziele: Ziel ist es, eine effektive Zusammenarbeit zu erreichen, gemeinsame Visionen zu entwickeln, erfolgreiche Zusammenarbeit zu demonstrieren und Netzwerkveranstaltungen zu organisieren.
Weiter Informationen zu diesem Projekt finden Sie hier.
Projektleitung: Prof. Dr.-Ing. Friedbert Pautzke
Fördermittelgeber: Bundesministerium für Bildung und Forschung, Programm FH-Impuls
Laufzeit: 04/2022 – 03/2024
Mithilfe der Konzipierung eines modularen Experimentierfahrzeugs und Erzeugung Digitaler Zwillinge soll ein breites Spektrum an verfügbaren und kombinierbaren Antriebskomponenten für elektrische Fahrzeugantriebe erzeugt werden, um so den Integrationsaufwand planbar gering zu halten.
Ziel des Projekts: Erzeugung eines breiten Spektrums von verfügbaren und kombinierbaren Antriebskomponenten für elektrische Fahrzeugantriebe, um den Integrationsaufwand planbar gering zu halten.
Dafür soll im explorativen Projekt OMAx-Vehicle ein modulares Experimentierfahrzeug konzipiert werden, das die Kompatibilität und Kommunikation elektrischer Komponenten von unterschiedlichen Herstellern in unterschiedlichen Leistungsklassen ermöglicht.
Um dieses Vorhaben in seiner Komplexität möglichst effektiv und lösungsorientiert umzusetzen, wird der methodische Ansatz des Modellbasierten Systems Engineerings (MBSE) gewählt. Dabei werden aus den bereits vorhandenen realen mechatronischen Systemen des elektrischen Antriebs (OMEx-DriveTrain) disziplinspezifisch und disziplinübergreifend digitale Zwillinge erzeugt. Die realen Objekte und Prozesse werden dabei nicht einfach „nur“ digital abgebildet, das DigitaleZwillings-Konzept stellt den Anspruch eine Kommunikation von Daten und Informationen zwischen realen und virtuellen Objekten/Prozessen zu erzeugen.
Ergebnisse des Projekts sind also:
- Konzipierung eines modularen Fahrzeugaufbaus mit Antriebsstrang
- Die praktische Anwendung von MBSE
- Die Definition von Simulationsmodellen zur Abbildung von digitalen Zwillingen
- Die Erzeugung von digitalen Zwillingen der Antriebskomponenten
- Reelle Erweiterung der OMEx-DriveTrain-Plattform um die Brennstoffzellentechnologie
- Hybrides Testen, Datenerfassen und Analysieren mit X-in-the-Loop
- Schulungsunterlagen, Tutorials und Beispiele/Demos als Online-Material


Projektleitung HSBO: Prof. Dr.-Ing. Iris Mühlenbruch, Prof. Dr.-Ing. Sebastian Seipel
Fördermittelgeber: Land NRW
Laufzeit: 2024-2034 (Zeitraum Landesförderung)
Die Förderung des Radverkehrs ist ein Schlüsselelement der nachhaltigen Mobilität und daher ein wichtiges Anliegen der Hochschule Bochum. Angesichts des aktuellen Fachkräftemangels, der die Planung und den Bau von Radverkehrsanlagen erschwert, wird an der Hochschule Bochum eine neue Fahrradprofessur eingerichtet. Gefördert wird diese Professur vom Land NRW, um die Ausbildung dringend benötigter Fachkräfte zu unterstützen und die Verkehrswende voranzutreiben.
Die Förderung umfasst eine Laufzeit von zehn Jahren und stellt jährlich bis zu 400.000 Euro zur Verfügung. Die Mittel beinhalten neben der Finanzierung der Professur selbst auch die Anstellung von zwei wissenschaftlichen Mitarbeitenden. Diese Ressourcen ermöglichen es der Hochschule Bochum, die Forschung und Lehre im Bereich des Radverkehrs zu erweitern und gleichzeitig einen wichtigen Beitrag zur Ausbildung neuer Fachkräfte auf akademischem Niveau zu leisten.
Ein wesentlicher Bestandteil der Förderung ist die Einrichtung eines Fahrradlabors, das durch die Landesmittel realisiert wird. Dabei liegt das Augenmerk auf der Erweiterung des Konsortiums an Erhebungs- und Messgeräten, um sicherzustellen, dass Theorie und Praxis in Lehre und Forschung eng miteinander verknüpft sind. Die Studierenden und Forschenden werden hier die Möglichkeit haben, innovative Lösungen für die Radinfrastruktur nicht nur zu entwickeln, sondern auch unter realen Bedingungen zu testen.
Zusätzlich zur Einrichtung des Fahrradlabors plant die Hochschule Bochum die Anschaffung von Materialien für sogenannte Reallabore. Diese Reallabore sind von großer Bedeutung, da sie es ermöglichen, theoretisch erarbeitete Konzepte praktisch zu testen und damit den Bezug zur Praxis zu stärken. Darüber hinaus fungieren Reallabore als Schnittstelle zwischen Forschung und Bevölkerung, indem sie Bewusstsein und Akzeptanz für innovative Lösungen im Bereich der Radinfrastruktur schaffen. Hierdurch wird die Bevölkerung aktiv in die Entwicklung und Umsetzung neuer Verkehrskonzepte eingebunden.
Neben der intensiven Arbeit in Lehre und Forschung an der Hochschule Bochum sind Kooperationen mit umliegenden Kommunen, insbesondere der Stadt Bochum, ein weiterer zentraler Aspekt des Projekts. Durch diese Zusammenarbeit sollen praxisorientierte Lösungen entwickelt und direkt in den beteiligten Gemeinden umgesetzt werden. Diese Vernetzung bietet nicht nur den Studierenden wertvolle Praxiserfahrungen, sondern ermöglicht es auch den Kommunen, von den neuesten wissenschaftlichen Erkenntnissen zu profitieren und innovative Radverkehrslösungen vor Ort zu realisieren.
Mit der Einrichtung der Fahrradprofessur und den damit verbundenen Maßnahmen setzen die Hochschule Bochum und das Land NRW einen bedeutenden Impuls für die Verkehrswende und leisten einen wichtigen Beitrag zur Ausbildung von Fachkräften im Bereich des Radverkehrs. Dies stellt einen relevanten Meilenstein auf dem Weg zu einer nachhaltigen Mobilität und einer zukunftsfähigen Verkehrsinfrastruktur dar.
Weiterführende Links:


Projektleitung: Prof. Dr.-Ing. Semih Severengiz
Fördermittelgeber: Bundesministerium für Bildung und Forschung (Förderkennzeichen: 13FH0I03IA)
Volumen (in €): 419.600
Laufzeit: 07/2022 – 07/2024
Der Verkehrssektor befindet sich in einer umfassenden Transformation, die darauf abzielt, Treibhausgasemissionen und Luftschadstoffe zu reduzieren sowie digitale, intelligente Lösungen für Ressourcen- und Flächeneffizienz in städtischen Gebieten zu entwickeln. Lösungen müssen nachhaltig und erschwinglich sein. Leichtelektrofahrzeuge (LEVs) wie E-Scooter, Pedelecs, Lastenräder und E-Mopeds sind entscheidend für energieeinsparende, emissionsfreie städtische Mobilität.
Das Projekt erforscht nachhaltige Energieversorgung für LEVs und geht dabei der Herausforderung nach, diese Fahrzeuge mithilfe digitaler Lösungen in erneuerbare Energiequellen zu integrieren. Es baut auf dem Teilprojekt SCiSusMob I auf und betont einen ganzheitlichen Ansatz zur Mobilität und Energie aus nachhaltiger Perspektive, unter Einbeziehung zukunftssicherer digitaler Infrastrukturen. Das Ziel ist es, Forschungsergebnisse in einem realen Labor zu testen und zu validieren, wobei der Fokus auf einer einheitlichen Plattform für Mobilitäts- und Energiedienstleistungen liegt. Dies führt zu einer standardisierten Methodik zur Bewertung der Nachhaltigkeitsauswirkungen von Mobilitätsdienstleistungen.
Hauptforschungsbereiche umfassen:
Entwicklung von Nachhaltigkeitsbewertungsmethoden wie der Ökobilanz (LCA) und Akzeptanzstudien. Untersuchung von Energieversorgungskonzepten für LEVs. Erstellung von Geschäfts- und Betriebsmodellen für Mobilitäts- und Energiedienstleistungen. Gestaltung einer dezentralen digitalen Plattform für diese Dienstleistungen. Erprobung des Mobilitäts- und Energiesystems in einer realen Umgebung. Etablierung von Standards und rechtlichen Rahmenbedingungen. Unter der Leitung von Prof. Dr.-Ing. Semih Severengiz ist das Projekt eine Zusammenarbeit mit Unternehmen aus den Bereichen Energie und Mobilität und wird von Firmen wie e-bility GmbH, Stadtwerke Bochum Holding GmbH und anderen unterstützt, die Drittmittel bereitstellen.


Projektleitung: Prof. Dr.-Ing. Semih Severengiz
Fördermittelgeber: Europäische Kommission
Volumen (in €): 321.911
Laufzeit: 06/2022 – 05/2026
Innovative Berufsbildung im Zeitalter des Energiemodus SEED (Sustainable Energy Education) ist eine Zusammenarbeit zwischen fünf europäischen Regionen unter der Leitung der Fachhochschule Utrecht. Das Ziel ist die Schaffung eines fossilfreien Kontinents durch herausragende, innovative berufliche Ausbildung.
SEED setzt sich für die entscheidende Rolle der Bildung im Kampf gegen den Klimawandel und den Übergang zu grüner Energie ein. Das Projekt fördert die gemeinsame Entwicklung herausragender Energiebildung an Berufseinrichtungen und regionalen Akteuren mit dem Ziel, qualifizierte Fachleute zu vermehren, Studiengänge mit dem Arbeitsmarkt zu integrieren und neue Energietechnologien voranzutreiben.
Die Initiative gründet fünf Exzellenzzentren für berufliche Bildung in den Niederlanden, Finnland, Spanien, Deutschland und Griechenland und bildet eine internationale Gemeinschaft, die Standards und Einblicke in die nachhaltige Energiebildung teilt.
Zusätzlich rüstet SEED, Teil des CoVE-Programms, das von Erasmus+, der EU finanziert wird, Einzelpersonen mit zukunftsorientierten Fähigkeiten aus und stärkt die regionale Innovation. Es unterstützt bewährte Praktiken in Lehre, Industriepartnerschaften und Bildungsmanagement, um die Attraktivität der beruflichen Bildung zu steigern.
CoVEs, von der Europäischen Kommission eingeführt, sind Netzwerke, die berufliche Praktiken aktualisieren und hochwertige Fähigkeitsschulungen bieten, die mit regionalen Entwicklungsstrategien verknüpft sind, um neue Synergien und Wissensschaffung zu fördern.

Projektleitung: Prof. Dr. Haydar Mecit
Fördermittelgeber: Bundesministerium für Wirtschaft und Klimaschutz
Laufzeit: 2022-2025
Die Energiewende ist für uns nicht nur aufgrund der aktuellen sicherheitspolitischen Lage, Energieressourcenknappheit und Energiepreisexplosion von Belang. Ein Wandel hin zu nachhaltigen Energiequellen ist vor allem auch angesichts des Klimawandels eine zentrale Aufgabe unserer Generation für die Sicherheit und Zukunft nachfolgender Generationen.
Dieses Spannungsfeld wird an der Hochschule Bochum insbesondere durch die Entwicklung sowie auch Erprobung neuartiger, digitaler Energie-Lösungen für urbane Räume vorangetrieben. Im Rahmen des BMWK-Projektes SEGuRo werden wir gemeinsam mit der RWTH Aachen und dem lokalen Energieversorger Stadtwerke Herne AG entsprechende F&E-Arbeiten zur sicheren Digitalisierung eines Stromnetzabschnittes im realen Stadtumfeld umsetzen. Die Entwicklung hin zu einem sog. Smart Grid geschieht dabei gemeinsam mit Akteuren aus Wirtschaft, Wissenschaft und Öffentlichkeit. In diesem Zusammenhang wird auch von sog. Smart-Energy-Lösungen gesprochen, wobei ein besonderer Fokus auf das Themengebiet der sicheren, kritischen Energie-Infrastrukturen gelegt wird.
Die zunehmende Durchdringung von verteilten Erzeugern (z.B. Photovoltaik-Anlagen) und Lasten (z.B. Elektroautos und Wärmepumpen) auf Verteilnetzebene führt zu einem dynamischeren und zunehmend unvorhersehbaren Netzverhalten. Dies erfordert eine flexible Regelung der Anlagen in Verteilnetzen, um diese möglichst in Einklang mit den Lasten zu bringen, damit weiterhin Versorgungssicherheit und Netzstabilität zu gewährleisten sowie kritische Netzzustände zu vermeiden. In diesem Zusammenhang wird im Rahmen des Netzausbaubeschleunigungsgesetzes der Redispatch 2.0 eingeführt, welcher die Verschiebung der Stromproduktion auch für kleinere Anlagen ab 100kW vorsieht. Eine dementsprechende Regelung erfordert innovative Lösungen zur Verteilnetzüberwachung, welche ein ganzheitliches Systemverständnis ermöglicht und in diesem Projekt entwickelt werden soll.
Das SEGuRo Konzept sieht eine fälschungssichere Signierung von Messdaten direkt am Messpunkt, einen sicheren Kommunikationskanal zur Übertragung der Daten und eine echtzeitfähige Monitoring Plattform vor. Die Monitoring Plattform umfasst im Wesentlichen eine Kombination aus digitalem Zwilling und dynamischer Netzzustandsschätzung sowie Datenmanagement und Visualisierung. Eine solch vollumfängliche Kombination von Technologien ist eine Innovation in der Netzüberwachung und bietet eine elementare digitale Grundlage, nicht nur zur Netzregelung, sondern auch für die flexible Abrechnung von u.a. neuartigen Netzdienstleistungen.

Projektleiter: Prof. Dr.-Ing. Friedbert Pautzke, Prof. Dr. Roland Böttcher & Dr.-Ing. Alexandra Lindner
Fördermittelgeber: Bundesministerium für Bildung und Forschung (BMBF)
Laufzeit: 2023 – 2027
Das Projekt StartUpLabs@BO begann Anfang 2023 an der Hochschule Bochum und wird vom Bundesministerium für Forschung und Bildung im Programm "Forschung an Fachhochschulen" unterstützt. Es dauert vier Jahre und konzentriert sich darauf, die Gründungsaktivitäten an der Hochschule zu verbessern. Dabei soll das StartUpLab erste Anlaufstelle und offener Treffpunkt für Gründungsinteressierte sein und den kreativen Akteur:innen besondere Freiräume für das Experimentieren, Validieren und Testen von innovativen Ideen bieten. Dafür wird die entsprechende Ausstattung bereitgestellt und die Studierenden, Mitarbeitenden sowie Lehrenden unterstützt.
Die vier wesentlichen Ziele des Projekts sind:
- Steigerung der Transfer- und Gründungsbefähigung an der Hochschule Bochum.
- Aufbau und Vernetzung dezentraler Labs und eines zentralen StartUpLabs.
- Erhöhung der Diversität in Gründungen.
- Entwicklung von Angeboten für Alumnae* und Alumni*.
Weitere Informationen finden Sie auf der Seite des Projekts.
Projektleitung: Prof Dr Mi-Yong Becker
Mit dem Projekt THALESruhr verwirklicht die Hochschule Bochum die Vision der „Grünsten Industrieregion Europas“. Neun einzelne Transferprojekte entwickeln Lösungen auf den Gebieten „Resilienz, Mobilität, Energie“, „Nachhaltiges Leben und Wirtschaften“ und „Produzieren, Planen, Bauen“.

Projektleitung: Prof. Dr.-Ing. Christoph Mudersbach in Kooperation mit Prof. Dr Jörg Frochte
Sachschäden in Milliardenhöhe, fast 200 Tote: Das Jahrhunderthochwasser im Juli 2021 hat gezeigt, dass die Metropole Ruhr nicht ausreichend auf Wetterextreme in Folge des Klimawandels vorbereitet ist. Dabei kann Künstliche Intelligenz helfen, die Widerstandsfähigkeit der Städte zu verbessern. Im Projekt entsteht ein digitales und smartes Überwachungssystem für überflutete Straßen. Wo wird es in der Metropole Ruhr besonders gefährlich, wenn es zu Hochwasser kommt? Die Analyse von Wetterdaten und Vorhersagemodelle sollen Hinweise liefern. Das Forschungsgebiet Wasserbau und Hydromechanik arbeitet zusammen mit Expert:innen für angewandte Künstliche Intelligenz an der zentralen Frage: Wie sieht eine Stadtentwicklung aus, die Fluten, Starkregen und Co. mitdenkt? Gemeinsam mit z. B. Wasserverbände, Kommunen, Stadtbetriebe und -verwaltungen werden Lösungen erarbeitet und umgesetzt.


Projektleitung: Prof. Dr.-Ing. Semih Severengiz
Fördermittelgeber: Bundesministerium für Bildung und Forschung (BMBF)
Inzwischen prägen E-Scooter, E-Bikes und Co. das Straßenbild vieler Großstädte in NRW. Doch noch nicht für alle Bürger:innen ist die Nutzung der Fahrzeuge attraktiv. Dabei könnte die sogenannte E-Mikromobilität einen Beitrag zum Klimaschutz leisten, wenn Geschäftsmodelle nachhaltig und wirtschaftlich arbeiten. Wo liegen Probleme? Wie gelingt eine weitere Verbreitung vor allem in städtischen Randgebieten und was erhöht die Akzeptanz? Methoden wie z. B. räumliche Analysen, Befragungen von Bürger:innen und Reallabore sollen Antworten liefern. In Zusammenarbeit mit einem E-Fahrzeughersteller und Unternehmen für Batteriewechsel- und Solarladestationen werden neue Geschäftsmodelle erprobt und mit Hilfe von echten Nutzungsdaten bewertet. Das Projekt ist im Labor für Nachhaltigkeit in der Technik angesiedelt.


Projektleitung: Prof. Dr.-Ing. Iris Mühlenbruch & Prof. Dr.-Ing. Friedbert Pautzke
Fördermittelgeber: Bundesministerium für Bildung und Forschung
Laufzeit: 2023 – 2027
Wer bekommt wie viel Platz? Bei der Frage nach der Aufteilung der städtischen Verkehrsflächen hat das Auto in den Ruhrgebietsstädten klar die Nase vorn. Damit Radfahren und Zufußgehen attraktiver und sicherer werden, muss sich das ändern. Zu neuen Nutzungsmöglichkeiten zählen neben Radwegen beispielsweise Stadtmöbel und Flächen für Kinderspiel. Sind die Menschen bereit dazu? Und welche Auswirkungen hat es, wenn die Straßenfläche neu verteilt wird? In konkreten städtischen Gebieten soll das analysiert und erprobt werden. Dabei kommt z. B. eine Zukunftswerkstatt mit Anwohnenden und Gewerbetreibenden sowie Online-Befragungen zum Einsatz. Den Tiefbau- und Planungsämtern von Kommunen in der Metropole Ruhr werden am Ende des Projekts Konzepte für Verkehrsexperimente überreicht.

Projektleiter: Prof. Dr. Petra Schweizer-Ries
Förderprogramm: Innovative Hochschule
Fördermittelgeber: Bundesministerium für Bildung und Forschung (BMBF)
Laufzeit: 01/2023 – 12/2027
Insektenfreundliche Pflanzen, Beete mit Grünkohl und Kartoffeln, ein erholsamer Barfußpfad: Der Hochschulgarten BOase am Campus Bochum macht bereits vor, wie Nachhaltigkeit und Gärtnerei lebendig werden und wie eine engere Verbindung zur eigenen Ernährung und Natur aussehen kann. Nun sollen in der Metropole Ruhr weitere nachhaltige Ökosysteme geschaffen werden, die permakulturell ausgerichtet – also natürlichen Abläufen nachempfunden – sind. Immer im Blick dabei: Städtische Grünflächen werden nicht nur als ökologische Flächen verstanden, sondern als Orte der Gemeinschaftsbildung, die zum Mitmachen anregen sollen. Wie gelingt das? Erlebnisorientierte Ansätze aus der Nachhaltigkeitswissenschaft liefern neue Antworten.

Projektleitung: Prof. Dr. Oliver Stengel & Prof. Dr. Jacinta Kellermann
Die Umwelt dankt, wenn ein Fahrrad repariert, statt ersetzt oder die Bohrmaschine ausgeliehen statt neu gekauft wird. Die Hochschule Bochum ist bei sogenannten Repair- und Sharing-Konzepten schon jetzt Vorreiterin: z. B. mit einem Repaircafé und der Bibliothek der Dinge, in der über 1.000 Gebrauchsgegenstände ausgeliehen werden können. Noch mehr Menschen in der Metropole Ruhr sollen davon profitieren und gleichzeitig Müll reduzieren. Deshalb wollen die Fachbereiche Wirtschaft, Elektrotechnik und Informatik Leih- und Repairstationen in der gesamten Metropolregion vernetzen – digital und Vor-Ort. Neue Werkstätten sollen in Kombination mit Bibliotheken der Dinge entstehen, ebenso ein Fernleihnetz, über das sich die einzelnen Zentren austauschen können.

Projektleitung: Prof. Dr. Marcus Schröter
Wenn Güter und Waren produziert werden, entstehen Treibhausgasemissionen – auch in der Metropolregion Ruhr. Vollständig klimaneutrale Wertschöpfungsketten sind die Ausnahme. Wie lassen sich solche Emissionen kompensieren? Die Bereiche Nachhaltigkeit im Ingenieurswesen und nachhaltige Entwicklung wollen eine innovative Technik einsetzen: Treibhausgas lässt sich durch Verschwelung in Pflanzenkohle binden. Sie kann anschließend beispielsweise die Fruchtbarkeit von Böden in der Landwirtschaft erhöhen oder in der Betonproduktion als Ersatz für Sand genutzt werden. Im Projekt werden eigens Pyrolyseofen gebaut, Anlagen in Betrieb genommen und Versuche zur Bodenwirkung der Pflanzenkohle durchgeführt. Kleine und mittlere Unternehmen aus der Region sollen in Workshops über solche Formen der Klimakompensationen aufgeklärt werden. Wenn sie ihre eigenen CO2-Emissionen kompensieren möchten, unterstützt die Hochschule Bochum sie bei der Suche nach privaten Dienstleistern.


Projektleitung: Prof. Dr. Klaus Legner
Fördermittelgeber: Bundesministerium für Bildung und Forschung (BMBF)
Wer von Wohneigentum träumt, stellt sich Haus oder Wohnung häufig mitten in der Natur vor, abseits der Stadt. Das kann problematisch sein, denn: Im Rahmen der Zersiedlung dehnen sich Städte weiter aus, (Grün-)Flächen werden besetzt und es entsteht beispielsweise mehr Verkehr. Sinnvoller ist es, vorhandene Flächen in Quartieren zu nutzen und gute Wohnlösungen zu schaffen. Der „HABI-CORE“-Infrastrukturkern wird konzipiert für die Integration in leerstehende Bestandsgebäude und für kleine, brach liegende Baulücken in der Stadt. Auf diese Weise soll zusätzlicher kostengünstiger, bezahlbarer und barrierearmer Wohnraum im städtischen Raum entstehen. Im Rahmen des Projekts wird ein nachhaltiger Prototyp aus Holz entwickelt, gebaut und getestet und als begehbarer Prototyp in Bochum präsentiert.

Projektleitung: Prof. Dr. Sven Pfeiffer
Der Aspekt der Nachhaltigkeit wird bei der Sanierung und Planung von Gebäuden immer wichtiger. Fragen lauten z. B.: Welche Form der Dämmung oder Heizung ist sinnvoller, sozialer, wirtschaftlicher? Damit Antworten bei der architektonischen Planung effizienter gefunden werden, arbeitet der Fachbereich Architektur an einer digitalen Planungsmethode, die Bauwerksdaten im Vorfeld modelliert.
Projektleitung: Prof. Dr.-Ing. Friedbert Pautzke und Tobias Scholz, M.Sc.
Fördermittelgeber: Bundesministerium für Bildung und Forschung (BMBF)
Projektträger: Bundesinstitut für Berufsbildung (bibb)
Förderprogramm: InnoVET
Laufzeit: 2024 - 2027
Herausforderung
Der Bedarf an Fachkräften im Handwerk und in der Industrie, die sich mit Batterietechnologien, Elektromobilität und Wasserstoffsystemen auskennen, steigt stetig. Um die Energie- und Mobilitätswende erfolgreich zu gestalten, müssen sich diese Fachkräfte weiterbilden, um innovative Technologien entwickeln und umsetzen zu können.
Lösung
Aufgabe des InnoVET Plus-Projekts TraFuSMS ist es, ein modulares Bildungskonzept zu entwickeln, das die bedarfsorientierte Aus- und Fortbildung von Fachkräften für die Energie- und Mobilitätswende ermöglicht. Im Mittelpunkt stehen drei Module für Fachkräfte aus Kfz-Betrieben und der Industrie sowie Mitarbeitende von Start-ups und kleineren Betrieben im Bereich nachhaltiger Mobilität:
- Bewertung von Batterien in Elektrofahrzeugen: Dieses Modul befähigt Lernende und Unternehmen, Diagnose- und Instandsetzungsmaßnahmen an Elektrofahrzeugen und deren Energiespeichern durchzuführen.
- Innovationsmanagement in kleinen Unternehmen: Hier wird das unternehmerische und innovationsorientierte Verhalten der Mitarbeitenden innerhalb des Betriebes gefördert.
- Arbeiten an Wasserstoffsystemen und Entwicklung nachhaltiger Energiesysteme: Lernende werden auf das sichere Arbeiten an Wasserstoffsystemen vorbereitet und erhalten das Wissen, um verschiedene Energiesysteme und Mobilitätslösungen hinsichtlich ihrer Nachhaltigkeit zu bewerten.
Der modulare Aufbau der Qualifizierung ermöglicht auch Mitarbeitenden in Start-ups oder kleineren Betrieben die Teilnahme, ohne längere Abwesenheiten im Unternehmen zu verursachen.
Zudem wird die Nutzung intelligenter, KI-basierter Übersetzungssoftware erprobt, um die Inhalte durch englischsprachige Fachbegriffe zu erweitern und somit die Lernenden auf Dokumentationen in englischer Sprache vorzubereiten.
Transfer
Das Lernangebot soll nach erfolgreicher Erprobung durch die Handwerkskammer Dortmund (HWK), der Bochumer KFZ-Innung (KFZI) und der regionalen Industrie- und Handelskammer (IHK) zertifiziert werden. Diese Zertifizierung stärkt die Verstetigung und Anerkennung der Konzepte in der Branche.
Die entwickelten Lerninhalte sollen nach Projektende als Bildungsangebote oder zur Ergänzung der Ausbildung bei der Handwerkskammer und der Innung für Kfz-Gewerbe aufgenommen werden. Darüber hinaus bieten die technischen Lehrmodule direkte Anknüpfungspunkte zur Energiebranche, da Energiespeicher aus Kraftfahrzeugen als dezentrale Netzspeicher in Haushalten und der Industrie weiterverwendet werden.
Konsortium
- Hochschule Bochum
- Institut für Elektromobilität
- DigiTeach Institut
- Resort Studium, Lehre und Weiterbildung
- Handwerkskammer Dortmund
- KFZ-Innung Bochum
Assoziiert
- IHK Mittleres Ruhrgebiet
- Bochum Wirtschaftsförderung
- Weitere: Voltvogel, E-Adventures, ruhrvalley, Nüwiel


Projektleitung: Prof. Dr.-Ing. Friedbert Pautzke
Fördermittelgeber: Bundesministerium für Bildung und Forschung (BMBF), Initiative "Battery 2020 Transfer"
Laufzeit: 11/2022 – 11/2025
UniZuB konzentriert sich auf die Entwicklung, Prüfung und Optimierung von Software- und Hardwarelösungen zur Bewertung des Zustands (State of Health; SOH) von Hochvoltbatterien (HV-Batterien). Hierbei werden Computersimulationen und praktische Experimente kombiniert, um die Anwendbarkeit im Feld zu gewährleisten.
Der Zustandsschätzer, auch als Diagnosewerkzeug oder Batterietester bezeichnet, wird in Zusammenarbeit mit Industrie- und Forschungspartnern über drei Jahre mithilfe der transdisziplinären Design-Thinking-Methode entwickelt. Zu den Schlüsselindustriepartnern gehören AVL DiTEST GmbH, spezialisiert auf HV-System-Messgeräte, und Zweidenker GmbH, Experten für Cloud-Lösungen. Das Projekt bezieht auch die AWG Abfallwirtschaftsgesellschaft mbH Wuppertal ein, die das Werkzeug für Entscheidungen bezüglich "Second-Life vs. Recycling" von HV-Batterien interessiert.
Das Projekt zielt darauf ab:
- Eine schnelle, zuverlässige und anpassbare Methodik zur Abschätzung des Zustands von HV-Batterien zu entwickeln.
- Einen Demonstrator für ein universelles Schnelldiagnosegerät für HV-Batterien zu erstellen, einschließlich Machbarkeitsnachweis.
- Cloud-Lösungen zur Speicherung verschiedener Arten von Daten zu entwickeln.
- Eine nachhaltige Wertschöpfungskette für HV-Batterien (Kreislaufwirtschaft) zu realisieren.
- Den Wissens- und Technologietransfer für Lebenszyklusanalysen von HV-Batterien zu erleichtern.
- Eine einheitliche Methodik für die Gefährdungsbeurteilung beim Transport von Elektrofahrzeugen und beim Batterierecycling zu etablieren.
Zu den akademischen Partnern gehören das Institut für Elektromobilität der Fachhochschule Bochum, Neue Effizienz gGmbH (ein Institut der Universität Wuppertal) und der Lehrstuhl für Elektromobilität und Energiespeichersysteme an der Universität Wuppertal.


Projektleitung: Prof. Dr.-Ing. Semih Severengiz
Fördermittelgeber: Bundesministerium für Bildung und Forschung (Förderkennzeichen: 21IV009F)
Volumen (in €): 395.794,12
Laufzeit: 12/2020 – 11/2024
Kooperationspartner: hier finden Sie eine Liste der Kooperationspartner.
Das InnoVET-Projekt UpTrain konzentriert sich darauf, die berufliche Bildung im kaufmännisch-technischen Sektor der Mobilitätsindustrie zu revitalisieren. Angesichts des Bedarfs an 100.000 zusätzlichen qualifizierten Mitarbeitern im öffentlichen Verkehr bis 2025 reagiert das Projekt auf Herausforderungen in den Bereichen Digitalisierung, Elektrifizierung und Automatisierung.
UpTrain zielt darauf ab, die Durchlässigkeit und Attraktivität der branchenspezifischen Ausbildung durch digitale Lernmaterialien für eine Mobilitätsakademie und tripartite Fortbildungsprogramme, die Verkehrsunternehmen, Universitäten und die Industrie verbinden, zu verbessern. Das Projekt wird umfassende Weiterbildungsmodelle für den öffentlichen Verkehrssektor entwickeln und testen.
Das Labor für Nachhaltigkeit in der Technik der Fachhochschule Bochum wird kooperative Lernsequenzen in den Bereichen Energie, neue Mobilitätslösungen und Szenariotechniken verbessern, digitale Inhalte mit Blended-Learning-Ansätzen integrieren. Die Hochschule trägt auch zu länderübergreifenden Bildungsberatungsdiensten bei und beteiligt sich an der Projektbewertung und -verbreitung.